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Preface

These notes are largely based on Math 6410: Ordinary Differential Equations course, taught
by Paul Bressloff in Fall 2015, at the University of Utah. Additional examples or remarks
or results from other sources are added as we see fit, mainly to facilitate our understanding.
These notes are by no means accurate or applicable, and any mistakes here are of course
our own. Please report any typographical errors or mathematical fallacy to me by email
tan@math.utah.edu.
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Chapter 1

Initial Value Problems

1.1 Introduction

We begin by studying the initial value problem (IVP){
ẋ = f(x), x ∈ U, f : U −→ Rn

x(0) = x0 ∈ U, x = (x1, . . . , xn)T
(IVP)

where U is an open subset of Rn. Unless stated otherwise, f will be as smooth as we need
them to be. First order ODEs are of fundamental importance, due to the fact that any nth
order ODE can be written as a system of n first order ODEs.

Example 1.1.1 (Newtonian Dynamics). Consider mẍ = −γẋ + F (x), where −γẋ is the
damping term and F (x) some external force. This can be written as a system of first order
ODEs: 

ẋ = y = f1(x, y),

ẏ = − γ
m
y +

F (x)

m
= f2(x, y).

• Observe that we have a conservative system if γ = 0. Indeed, let V (x) = −
∫ x

F (s) ds
be the potential function. Multiplying the ODE by ẋ yields

mẋẍ = −
(
dV

dx

)
ẋ =⇒ d

dt

(
1

2
mẋ2

)
= − d

dt
V (x(t)).

Thus, we obtain the well-known conservation of energy:
1

2
mẋ2 + V (x) = E.

• Let p = mẋ be the momentum, and define the Hamiltonian as

H = H(x, p) =
1

2m
p2 + V (x).

We have the following Hamilton’s equations:

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
.

7
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An important property of Hamiltonian is they are conserved over time, i.e.

dH

dt
=
∂H

∂x
ẋ+

∂H

∂p
ṗ = 0.

Example 1.1.2 (Classical Predator-Prey Model). Let N(t) be the amount of bacteria, and
assume that N is large enough so that we can treat it as a continuous variable. One simple
model is the following:

Ṅ = NK

(
1− N

Nmax

)
− d, N(0) = N0.

Non-dimensionalising the system with the dimensionless parameters

x =
N

Nmax

, τ = Kt, D =
d

KNmax

yields the dimensionless equation ẋ = (1 − x)x − D. This is a bifurcation problem, with bi-
furcation paramter D. If 0 < D < 1/4, then there eixsts 2 fixed points; otherwise there is no
fixed points.

From a geometric perspective, it seems rather natural to think of solution to (IVP) as a
function of initial value x(0) = x0 and time t. This motivates the definition of a flow.

Definition 1.1.3. Let U ⊂ Rn and f ∈ C1(U). Given x0 ∈ U , let φt(x0) = φ(x0, t) be the
solution of (IVP) with t ∈ I(x0), where I(x0) is the maximal time interval over which a unique
solution exists. Such set of mappings φt is called the flow of the vector field f .

• For a fixed x0 ∈ U , φ(x0, ·) : I(x0) −→ U defines a curve or trajectory, Γ(x0) of the
system through x0. Specifically,

Γ(x0) =
{
x ∈ U : x = φt(x0), t ∈ I(x0)

}
.

• If x0 varies over a set M ⊂ U , then the flow φt : M −→ U defines the motion of a cloud
of points in M .

Theorem 1.1.4 (Time-shift invariance). For any x0 ∈ U , if t ∈ I(x0) and s ∈ I(φt(x0)),
s > 0, then s+ t ∈ I(x0) and φs+t(x0) can be expressed as φs+t(x0) = φs(φt(x0)).

Proof. Let I(x0) = (α, β) be the maximal time interval over which there exists a unique
solution. Consider the function x : (α, s+ t) −→ U defined by

x(r) =

{
φ(r, x0) if r ∈ (α, t],

φ(r − t, φt(x0)) if r ∈ [t, s+ t].

We see that x(r) is a solution of the IVP on (α, s+ t). Hence, s+ t ∈ I(x0) and uniqueness of
solution gives

φs+t(x0) = x(s+ t) = φ(s, φt(x0)) = φs(φt(x0)).

�
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Remark 1.1.5. The result is trivial if s = 0. The result holds for s < 0 by evolving backwards
in time. A corollary of the above theorem is that φ−t(φt(x0)) = φt(φ−t(x0)) = x0, i.e. we have
an abelian group structure here!

Remark 1.1.6. There exists ODEs in which solution does not exist globally, even if f ∈ C1(U).

Consider the ODE ẋ = f(x) =
1

x
, where f ∈ C1(U) with U = {x ∈ R : x > 0}. For an

initial condition x(0) = x0 ∈ U , a solution to this IVP is given by φt(x0) =
√

2t+ x2
0, with

I(x0) =

(
−x2

0

2
,∞
)

.

1.2 Planar Dynamics

Consider the general autonomous second order system{
ẋ = X(x, y)

ẏ = Y (x, y)

Assuming existence and uniqueness, then paths only cross at fixed points.

1.3 Existence and Uniqueness

In this section, we focus on establishing sufficient conditions such that there exists a unique
solution to (IVP). Not suprisingly, regularity of f : U −→ Rn plays an important role, as we
shall see below.

(a) Continuity of f is not sufficient to guarantee uniqueness of a solution.

• Consider ẋ = 3x2/3, x(0) = 0. One solution is the trivial solution x(t) ≡ 0 for all
t ≥ 0. Another solution is obtained by using separation of variable:

1

3

∫ x

0

1

s2/3
ds = t =⇒ x(t) = t3.

• Observe that f is continuous but not differentiable at the origin.

(b) A solution can become unbounded at some finite time t = T , i.e. finite-time blow up.

• Consider ẋ = x2, x(0) = 1. We have two branches of solution, x(t) =
1

1− t
, depending

on the initial condition.

• In this case, our solution is only defined on t ∈ (−∞, 1), and lim
t→1−

x(t) =∞.

• The other branch is defined on t ∈ (1,∞), but is not reached by the given initial
condition.

Definition 1.3.1.
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(a) We say that f : Rn −→ Rn is differentiable at x0 ∈ Rn if there exists a linear transfor-
mation Df(x0) ∈ L(Rn), called the n× n Jacobian matrix such that

lim
|h|→0

|f(x0 + h)− f(x0)−Df(x0)h|
|h|

= 0.

(b) Let U be an open subset of Rn. A function f : U −→ Rn is said to satisfy a Lipschitz
condition on U if there exists K > 0 such

|f(x)− f(y)| ≤ K|x− y| for all x, y ∈ U.

(c) A function f : U −→ Rn is said to be locally Lipschitz on U if for every x0 ∈ U , there
exists an ε-neighbourhood Nε(x0) ⊂ U and K0 > 0 such that

|f(x)− f(y)| ≤ K0|x− y| for all x, y ∈ Nε(x0).

Theorem 1.3.2. C1(U) =⇒ locally Lipschitz on U .

Proof. Choose an arbitrary x0 ∈ U and suppose x, y ∈ Bε(x0) ⊂ U , with K = max
x∈Bε(x0)

‖Df(x)‖.

Convexity of Bε(x0) means that x + su ∈ Bε(x0) for 0 ≤ s ≤ 1, with u = y − x. Let
F (s) = f(x+ su), then F ′(s) = Df(x+ su) · u and

|f(y)− f(x)| = |F (1)− F (0)| =
∣∣∣∣∫ 1

0

F ′(s) ds

∣∣∣∣ ≤ ∫ 1

0

|Df(x+ su) · u| ds

≤ K

∫ 1

0

|x− y| ds = K|x− y|.

�

1.3.1 Picard’s Method of Successive Approximation

Let x(t) be a solution to (IVP), that is x(t) is a continuous function satisfying the integral
equation

x(t) = x0 +

∫ t

0

f(x(s)) ds,

and vice-versa. Successive approximations to the solution of the integral equation are defined
by the sequence of functions

u0(t) = x0, uk+1(t) = x0 +

∫ t

0

f(uk(s)) ds. (1.3.1)

Example 1.3.3. Consider ẋ = Ax with x(0) = x0.

u1(t) = x0 +

∫ t

0

Ax0 ds = x0(1 + At).
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u2(t) = x0 +

∫ t

0

A[x0(1 + As)] ds = x0

(
1 + At+

A2t2

2

)
.

...
...

...

uk(t) = x0

(
1 + At+ . . .+

(At)k

k!

)
−→ x0e

At as k −→∞.

Theorem 1.3.4 (Fundamental Theorem of Existence and Uniqueness of ODEs).
Let U be an open subset of Rn containing x0, and f ∈ C1(U). There exists a > 0 such that the
(IVP) has a unique solution on I = [−a, a].

Proof. We prove that the sequence of successive approximations (uk)
∞
k=1 given by (1.3.1) con-

verges to a solution. Using completeness of C0[−a, a] with respect to the uniform norm, it
suffices to show that (uk) is a Cauchy sequence. It is clear from (1.3.1) and f ∈ C1(U) that
(uk) ∈ C0(U), in particular (uk) ∈ C0[−a, a]. The proof is divided into four parts.

(A) Theorem 1.3.2 implies that f is locally Lipschitz on U . Given x0 ∈ U , choose b = ε/2 > 0
and consider Nb(x0) ⊂ Nε(x0) on which f is Lipschitz with Lipschitz constant K > 0.
Let M = max

Nb(x0)
|f(x)|. We need to choose a > 0 such that (uk) ∈ Nb(x0) for all

k ≥ 1. Suppose a > 0 is sufficiently small such that

max
t∈[−a,a]

|uk(t)− x0| ≤ b. (1.3.2)

A direct estimate shows that

|uk+1(t)− x0| ≤
∫ t

0

|f(uk(s))|ds ≤Ma ∀t ∈ [−a, a].

By choosing 0 < a ≤ b/M , it follows from induction that the sequence of succesive
approximations (uk) satisfies (1.3.2).

(B) Observe that to control the difference between any two approximations, it suffices to
control the difference between two successive approximations. For the first two successive
approximations,

|u2(t)− u1(t)| ≤
∫ t

0

|f(u1(s))− f(u0(s))| ds

≤ K

∫ t

0

|u1(s)− u0(s)| ds
[
f is locally Lipschitz

]
≤ Ka max

t∈[−a,a]
|u1(t)− x0|

[
u0 = x0

]
≤ Kab

[
from (1.3.2)

]
We generalise this estimate by induction. Assuming that

max
t∈[−a,a]

|uj(t)− uj−1(t)| ≤ (Ka)j−1b, (1.3.3)
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for some j ≥ 1. From (1.3.1), for t ∈ [−a, a] we have that

|uj+1(t)− uj(t)| ≤
∫ t

0

|f(uj(s))− f(uj−1(s))| ds

≤ K

∫ t

0

|uj(s)− uj−1(s)| ds
[
f is locally Lipschitz

]
≤ Ka max

t∈[−a,a]
|uj(t)− uj−1(t)|

≤ (Ka)jb
[
from (1.3.3)

]
(C) We are ready to show that (uk) is a Cauchy sequence in C0[−a, a]. By choosing 0 < a <

1

K
,

we see that for all m > n ≥ N and t ∈ [−a, a] we have

|um(t)− un(t)| ≤
m−1∑
j=n

|uj+1(t)− uj(t)| ≤
∞∑
j=N

|uj+1(t)− uj(t)|

≤
∞∑
j=N

(Ka)jb

=

[
(Ka)N

1−Ka

]
b −→ 0 as N −→∞.

Thus, for all ε > 0, there exists an N ∈ N such that

‖um − un‖ = max
t∈[−a,a]

|um(t)− uk(t)| < ε for all m,n ≥ N,

i.e. (uk) is a Cauchy sequence. Completeness of C0[−a, a] with respect to the supremum
norm implies that uk(t) −→ u(t) uniformly for all t ∈ [−a, a] as k −→ ∞, for some
u(t) ∈ C0[−a, a]. Taking the limit as k −→∞ in (1.3.1) yields

u(t) = x0 +

∫ t

0

f(u(s)) ds

u(t) = lim
k→∞

uk(t).

i.e. u(t) is a solution to (IVP). Note that interchange between limits and integrals is
allowed here due to uniform convergence of (uk) in C0[−a, a].

(D) Finally, we prove uniqueness. Suppose u(t), v(t) are solutions to (IVP) on [−a, a]. Ex-
treme Value Theorem states that continuous function |u(t)−v(t)| achieves its maximum
at some t1 ∈ [−a, a].

‖u− v‖ = max
t∈[−a,a]

|u(t)− v(t)| =
∣∣∣∣∫ t1

0

(
f(u(s))− f(v(s))

)
ds

∣∣∣∣
≤
∫ |t1|

0

|f(u(s))− f(v(s))| ds

≤ K

∫ |t1|
0

|u(s)− v(s)| ds
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≤ Ka max
t∈[−a,a]

|u(t)− v(t)|

= Ka‖u− v‖.

Since 0 < Ka < 1, we must have ‖u− v‖ = 0 =⇒ u(t) = v(t) for all t ∈ [−a, a].

�

Remark 1.3.5.

1. Observe that a > 0 is chosen such that the sequence of successive approximations (uk)
remains in a neighbourhood where f is Lipschitz around x0, and such that (uk) is a
Cauchy sequence in C0[−a, a]. In this proof, a > 0 is chosen such that

0 < a < min

{
b

M
,

1

K

}
.

2. One could also apply the Contraction Mapping Principle, which is a powerful ma-
chinery in existence and uniqueness problems. A similar result (and proof) holds for
non-autonomous ODEs, where f is assumed to be C1 with respect to x and C0 with
respect to t.

1.3.2 Dependence on Initial Conditions

We will now prove Gronwall’s inequality, which is perhaps one of the most important tool
in the theory of ODEs. In short, if a function satisfies an integral inequality implicitly, then
Gronwall’s inequality gives an explicit bound on the function itself.

Theorem 1.3.6 (Gronwall’s Lemma). Suppose v, u, c are positive functions on [0, t] and c is
a differentiable function. Suppose v(t) satisfies

v(t) ≤ c(t) +

∫ t

0

u(s)v(s) ds.

The following inequality holds

v(t) ≤ c(0) exp

{∫ t

0

u(s) ds

}
+

∫ t

0

c′(s) exp

{∫ t

s

u(τ) dτ

}
ds.

Proof. The main idea is to derive estimates for the second term independent of v(t). Let

R(t) =

∫ t

0

u(s)v(s) ds, then

Ṙ(t) = u(t)v(t) ≤ u(t)

[
c(t) +

∫ t

0

u(s)v(s) ds

]
= u(t)[c(t) +R(t)].

Rearranging the above inequality and using the integrating factor technique gives

Ṙ(t)− u(t)R(t) ≤ c(t)u(t)
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d

dt

[
exp

{
−
∫ t

0

u(s) ds

}
R(t)

]
≤ exp

{
−
∫ t

0

u(s) ds

}
c(t)u(t).

Integrating both sides with respect to t yields

exp

{
−
∫ t

0

u(τ) dτ

}
R(t) ≤ R(0) +

∫ t

0

exp

{
−
∫ s

0

u(τ) dτ

}
c(s)u(s) ds

R(t) ≤
∫ t

0

exp

{∫ t

s

u(τ) dτ

}
c(s)u(s) ds

Hence,

v(t) ≤ c(t) +R(t) ≤ c(t) +

∫ t

0

exp

{∫ t

s

u(τ) dτ

}
c(s)u(s) ds

= c(t) +

∫ t

0

c(s)

[
− d

ds
exp

{∫ t

s

u(τ) dτ

}]
ds

where the negative sign is due to differentiating the lower limit of the integral. Finally, inte-
grating by parts yields

v(t) ≤ c(t)−
[
c(s) exp

{∫ t

s

u(τ) dτ

}] ∣∣∣∣s=t
s=0

+

∫ t

0

c′(s) exp

{∫ t

s

u(τ) dτ

}
ds

= c(0) exp

{∫ t

0

u(s) ds

}
+

∫ t

0

c′(s) exp

{∫ t

s

u(τ) dτ

}
ds.

�

Theorem 1.3.7 (Dependence on Initial Conditions). Consider the following IVPs{
ẋ = f(x), x(0) = y,

with solution x0(t), t ∈ I.

{
ẋ = f(x), x(0) = y + h,

with solution xε(t), t ∈ I.

where f is Lipschitz continuous in x with Lipschitz constant L, |h| ≤ ε, ε > 0, and I is the
maximum time interval in which solution exists. The following holds for all t ∈ I

|xε(t)− x0(t)| ≤ εeLt.

Proof. These IVPs are equivalent to the integral equation
x0(t) = y +

∫ t

0

f(x0(s)) ds

xε(t) = y + h+

∫ t

0

f(xε(s)) ds.

Taking the difference yields

|xε(t)− x0(t)| ≤ |h|+
∫ t

0

|f(xε(s))− f(x0(s))| ds

≤ ε+ L

∫ t

0

|xε(s)− x0(s)| ds.

Applying Gronwall’s Lemma with v(s) = |xε(s) − x0(s)|, u(s) = L and c(s) = ε yields the
desired result.

�
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1.4 Manifolds

1.5 Limit Cycle and Poincaré-Bendixson Theorem

Given a nonlinear dynamical systems, one usually locates fixed points of the system and anal-
yses the behaviour of solutions in the neighbourhood of each fixed point. However, one could
also look for periodic solutions, or solutions that form a closed curve eventually. The latter
motivates the notion of limit cycles, which has been widely used in modelling behaviour of
oscillatory systems, such as the well-known Van der Pol oscillator.

Definition 1.5.1. A limit cycle is an isolated periodic solution of an autonomous system
represented in the phase plane by an isolated closed path.

• Autonomous linear systems cannot exhibit limit cycles.

• Cannot usually establish existence of a limit cycle for a nonlinear system.

– Reduce to 2D (Poincaré-Bendixson), or

– Finite dimension (Hopf bifurcation).

Remark 1.5.2. It turns out that the continuity of the vector field f imposes strong restriction
on the possible arrangements of fixed points and periodic orbits. One can define the Poincaré
index I(Γ) of a closed curve Γ to be the number of times f rotates anti-clockwise as we go
around Γ in the anti-clockwise direction. A limit cycle has index I(Γ) = +1 since the vector
f(x) is tangential to Γ at every point on it. It can be shown that the sum of indices of the
fixed points enclosed by a limit cycle is +1. More examples:

• Closed curve without fixed points: I(Γ) = 0.

• Saddle: I(Γ) = −1.

• Sinks/sources: I(Γ) = 1.

Consequently, a periodic orbit cannot encloses a saddle and a sink/source because then I(Γ) =
0 6= +1.

This next result provides a method of establishing non-existence of limit cycles.

Lemma 1.5.3 (Bendixson’s Negative Criterion). There are no closed paths in a simply con-

nected region of the phase plane, on which
∂X

∂x
+
∂Y

∂y
is of one sign. (∇ · f 6= 0)

Proof. Assume by contradiction that there exists a closed path C in a region D, where ∇ · f
has one sign. By the Divergence Theorem,∫∫

M

(∂X
∂x

+
∂Y

∂y

)
dxdy =

∮
C

(X, Y ) · n ds.

Since C is always tangent to the vector field (X, Y ), the normal vector n to C is always
perpendicular to the vector field (X, Y ). Consequently, the integrand (X, Y ) · n ≡ 0 and this
contradicts the assumption that the integral on LHS cannot vanish due to ∇ · f 6= 0. �
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Example 1.5.4 (Dampled nonlinear oscillator).
Consider ẍ+ p(x)ẋ+ q(x) = 0, where p, q are smooth functions and p(x) > 0. Rewrite this as
a system of first order ODEs: {

ẋ = y = X(x, y).

ẏ = −q(x)− p(x)y = Y (x, y).

Thus,
∂X

∂x
+
∂Y

∂y
= −p(x) < 0, which implies that there are no contractible orbits.

1.5.1 Orbits, Invariant Sets and ω-Limit Sets

In order to discuss about limit cycles, one must first understand the long term behaviour of
a dynamical system. This motivates the idea of limit sets, which can be described using flow
map, a notion we first seen in Definition 1.1.3.

Definition 1.5.5.

(a) Consider the ODE ẋ = f(x), x ∈ Rn. Solution to this equation defines a flow, φ(x, t),
which satisfies 

d

dt

(
φ(x, t)

)
= f(φ(x, t))

φ(x, t0) = x0.

(b) A point x is periodic of minimal period T if and only if

(i) φ(x, t+ T ) = φ(x, t) for all t ∈ R, and

(ii) φ(x, t+ s) 6= φ(x, t) for all s ∈ (0, T ).

The curve Γ = {φ(x, t) : 0 ≤ t < T} is called a periodic orbit, and it is a closed curve.

(c) A set M is invariant under the flow φ if and only if for all x ∈ M , φ(x, t) ∈ M for all
t ∈ R.

• Forward (backward) invariant if this holds for all t > 0 (t < 0).

(d) Suppose that the flow is defined for all x ∈ Rn and t ∈ R. The orbit/trajectory through

x in Rn is the set γ(x) =
⋃
t∈R

φ(x, t).

• Positive semi-trajectory through x is the set γ+(x) =
⋃
t>0

φ(x, t).

• Negative semi-trajectory through x is the set γ−(x) =
⋃
t<0

φ(x, t).

• A set M is invariant (under φ) if and only if γ(x) ∈M for all x ∈M .
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Definition 1.5.6.

(a) The ω-limit set of x is

ω(x) = {y ∈ Rn : ∃(tn)∞n=1 −→∞ s.t. φ(x, tn) −→ y as n −→∞} .

Note that y is a limit point of γ+(x).

(b) The α-limit set of x is

α(x) = {y ∈ Rn : ∃(τn)∞n=1 −→ −∞ s.t. φ(x, τn) −→ y as n −→∞} .

Note that y is a limit point of γ−(x).

Definition 1.5.7.

(a) An invariant set M ⊂ Rn is an attracting set of ẋ = f(x) if there exists some neighbour-
hood N of M such that for all x ∈ N , φ(x, t) −→ M as t −→ ∞, and φ(x, t) ∈ N for all
t ≥ 0.

(b) An attractor is an attracting set which contains a dense orbit.

(c) If M is an attracting set, then the basin of attraction of M , B(M) is

B(M) = {x ∈ Rn : φ(x, t) −→M as t −→∞}.

• Consider a stable limit cycle, Γ. Then ω(x) = Γ if x lies in the basin of attraction of Γ.

Theorem 1.5.8 (Properties of ω(x)).

(a) ω(x) is closed and invariant.

(b) If the positive orbit γ+(x) is bounded, then ω(x) is non-empty and compact. [Similar
result holds for α(x), with γ−(x) bounded.]

Proof. To show that ω(x) is closed, consider a sequence of points in ω(x). Suppose that
yk ∈ ω(x) and yk −→ ȳ ∈ Rn as k −→ ∞. For each p ∈ N, there exists kp > 0 such

that d(ykp , ȳ) <
1

p
. Since ykp ∈ ω(x), for each kp > 0, there exists tp > tp−1 + 1 such that

d(φ(x, tp), ykp) <
1

p
. By triangle-inequality,

d(φ(x, tp), y) ≤ d(φ(x, tp), ykp) + d(ykp , y)

<
2

p
−→ 0 as p −→∞.

with (tp) an increasing sequence to ∞. Thus, y ∈ ω(x).
To show that ω(x) is invariant, suppose that p ∈ ω(x), then there exists a sequence

(tn) −→∞ such that φ(x, tn) −→ p as n −→∞. We need to show that φ(p, t) ∈ ω(x) for any
t ∈ R. Setting t̃n = t+ tn and applying Theorem 1.1.4 yields (for a fixed t > 0)

φ(t̃n, x) = φ(t+ tn, x) = φ(t, φ(tn, x)) −→ φ(t, p) as n −→∞.
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Hence, the positive orbit containing p lies in ω(x), and thus ω(x) is positive-invariant.
If γ+(x) is bounded, then ω(x) is bounded. Recall that a bounded set in Rn with infinitely

number of points has at least one accumulation point. This implies that ω(x) is non-empty.
Since ω(x) is a closed, bounded subset of Rn, Heine-Borel theorem implies that ω(x) is
compact.

�

1.5.2 Local Transversals

Definition 1.5.9. A local transversal, L is a line segment such that all trajectories of the
ODE ẋ = f(x), x ∈ R2 cross from the same side.

• If x0 is not a fixed point, then one can always construct a local transversal in a neigh-
bourhood of x0 by continuity.

• It is a C1 arc on which f · n 6= 0, where n is the outward unit normal to L. Thus, f is
never tangent to L near x0 and f ·n has constant sign, since otherwise f must be tangent
to L at some point.

Lemma 1.5.10. If a trajectory γ(x) intersects a local transversal L several times, then the
successive crossing points move monotonically along L.

Proof. This is a consequence of the Jordan-Curve lemma: A closed curve in the plane
separates the plane into 2 connected components: exterior (unbounded) and interior (bounded).
The closed curve from P1 to P2 (union of shaded region and the line connecting P1 and P2)
defines an interior, within which orbit cannot re-enter. This implies that P3 must be beyond
P2.

�

Corollary 1.5.11. If x ∈ ω(x0) is not a fixed point, and x ∈ γ(x0), then γ(x) is a closed
curve.

Proof. Since x ∈ γ(x0), it follows that ω(x) = ω(x0). Choose L to be a local transversal through
x. Since x ∈ ω(x), there exists an increasing sequence (tn) −→ ∞ such that φ(x, tn) −→ x
as n −→ ∞, with φ(x, tn) ∈ L and φ(x, 0) = x. We see immediately that we must have
φ(x, tn) = x for all n ≥ 1, otherwise Lemma 1.5.10 implies that the succesive points φ(x, tn)
on L move monotonically away from x, contradicting x ∈ ω(x).

�

Remark 1.5.12. If x ∈ ω(x0), then by definition, γ+(x0) comes arbitrarily close to x as
t −→∞, so it makes intersections with a local transversal L through x, arbitrary close to x.

1.5.3 Poincaré-Bendixson Theorem

Theorem 1.5.13 (Poincaré-Bendixson Theorem). Suppose that a trajectory γ(x0)

(a) enters and does not leave some compact region D, and
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(b) there are no fixed points in D.

Then there is at least 1 periodic orbit in D, and this orbit lies in ω(x0).

• If we have a compact, positively-invariant region without any fixed points, then the
theorem gives that ω(x0) is a periodic orbit for all x0 in the region.

• Doesn’t rule out existence of several periodic orbits.

• Different ω(x0) could have different periodic orbits.

Proof. Since γ(x0) enters and does not leave the compact domain D, ω(x0) is non-empty and
is contained in D. Choose x ∈ ω(x0), and note that x is not a fixed point by assumption, so
we can define a local transversal L, through x. There are two possible cases:

1. x ∈ γ(x0), so γ(x) is a periodic orbit from Corollary 1.5.11

2. x /∈ γ(x0). Since x ∈ ω(x0), we have γ+(x) ⊂ ω(x0) since ω(x0) is positive-invariant,
so γ+(x) ⊂ ω(x0) ⊂ D. As D is compact, γ+(x) has a limit point x∗ ∈ D such that
x∗ ∈ ω(x) ⊂ ω(x0). There are two possible cases:

(a) x∗ ∈ γ+(x), so γ(x∗) is a periodic orbit from Corollary 1.5.11.

(b) x∗ /∈ γ+(x), which leads to a contradiction as we will show now. Indeed, choose a
local transversal L through x∗. Since x∗ ∈ ω(x) ⊂ ω(x0), the trajectory γ+(x) must
intersect L at points P1, P2, . . . that accumulate monotonically on x∗. However, these
points (Pj)

∞
j=1 ∈ ω(x0)

⋂
L since γ+(x) ⊂ ω(x0). Hence, γ(x0) passes arbitrarily

close to Pj, then Pj+1, and so on, infinitely number of times. This implies that
γ(x0) intersections with L are not monotonic, which contradicts Lemma 1.5.10.

�

Remark 1.5.14.

1. The last sentence of the proof might be confusing, but the contradiction arises from the
following corollary of Lemma 1.5.10: If L is a local transversal, then for any z ∈ R2,
ω(z) ∩ L contains at most one point.

2. ω(x0) is actually a periodic orbit. To prove this, it suffices to show that φ(x0, t) −→
γ+(x). Take a local transversal L′ through x. There are two possible cases:

(a) x0 ∈ γ+(x), which trivially means ω(x0) = ω+(x).

(b) x0 /∈ γ+(x). Since x ∈ ω(x0), γ+(x0) intersects L′ arbitrarily close to x as (tj) −→∞.
For any neighbourhood N of γ+(x), since φ(x0, tj) −→ x as j −→ ∞, there exists
j ∈ N such that φ(x0, t) ∈ N for all t ∈ [tj, tj+1]. This is also true for all t ≥ tj.
Hence, φ(x0, t) −→ γ+(x) as t −→∞ and ω(x0) contains no points outside γ+(x).

3. Poincaré-Bendixson theorem applies to sphere or cylinder, but not on torus since the
Jordan Curve Theorem fails for simple closed curves on a torus!

4. In practice, one typically looks for an annular region D with
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(a) a source in the hole (so trajectory enters D across the inner boundary),

(b) and the outer boundary is chosen so that trajectory are inward on this boundary.

More precisely, we choose D to be

D = {(r, θ) : R1 − ε ≤ r ≤ R2 + ε},

such that
ṙ > 0 for 0 < r < R1, ṙ < 0 for r > R2, θ̇ 6= 0 in D.

Remark 1.5.15. One usually converts from Cartesian (x, y) to polar coordinates (r, θ) in
analysing planar systems. The following expression for ṙ and θ̇ are useful to keep in mind:

ṙ = xẋ+ yẏ, r2θ̇ = xẏ − yẋ.

Example 1.5.16. Consider the following ODE
ẋ = y +

1

4
x(1− 2r2)

ẏ = −x+
1

2
y(1− r2)

r2 = x2 + y2.

• At a fixed point,

y = −1

4
x(1− 2r2)

x =
1

2
y(1− r2)

=⇒ yx = −1

8
xy(1− 2r2)(1− r2)

=⇒ 0 = xy

[
1 +

1

8
(1− 2r2)(1− r2)

]
.

Either x = 0, y = 0 or (1− 2r2)(1− r2) = −8 =⇒ 2r4 − 3r2 + 9 = 0; this equation has
no real solution for r 6= 0. Therefore, the origin (0, 0) is the only fixed point.

• Computing ṙ using rṙ = xẋ+ yẏ yields:

rṙ = xẋ+ yẏ

=
1

4
x2(1− 2r2) +

1

2
y2(1− r2)

=
1

4
x2 − 1

2
r2x2 +

1

2
y2 − 1

2
r2y2

=
1

4
r2 − 1

2
r2 +

1

4
r2 sin2(θ)

=
1

4
r2[1 + sin2(θ)]− 1

2
r4.
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• Thus,

rṙ =
1

4
r2[1 + sin2(θ)]− 1

2
r4 ≥ 1

4
r2 − 1

2
r4 > 0⇐⇒ 1

4
r2 − 1

2
r4 > 0

⇐⇒ 1

4
r2(1− 2r2) > 0

⇐⇒ r2 <
1

2
, r <

1√
2

rṙ =
1

4
r2[1 + sin2(θ)]− 1

2
r4 ≤ 1

2
r2 − 1

2
r4 < 0⇐⇒ r2(1− r2) < 0

⇐⇒ r2 > 1, r > 1.

We then choose D =

{
(r, θ) : R1 ≤ r ≤ R2, R1 <

1√
2
, R2 > 1

}
.

1.6 Problems

1. The simple pendulum consists of a point mass m suspended from a fixed point by a massless
rod L, which is allowed to swing in a vertical plane. If friction is ignored, then the equation
of motion is

ẍ+ ω2 sin(x) = 0, ω2 =
g

L
, (1.6.1)

where x is the angle of inclination of the rod with respect to the downward vertical and g
is the gravitational constant.

(a) Using the conservation of energy, show that the angular velocity of the pendulum sat-
isfies

ẋ = ±
√

2(C + ω2 cos(x))1/2,

where C is an arbitrary constant. Express C in terms of the total energy system.

Solution: Multiplying (1.6.1) by ẋ and simplifying yields

ẍẋ+ ω2 sin(x)ẋ = 0

(b) Plot or sketch the phase diagram of the pendulum equation. That is, set up Cartesian
axes x, y called the phase plane with y = ẋ and illustrate the one parameter family of
curves given by part (a) for different values of C. Take −3π ≤ x ≤ 3π and indicate the
fixed points of the system and the separatrices, curves linking the fixed points. Give
a physical interpretation of the underlying trajectories of the two distinct dynamical
regimes |C| < ω2 and |C| > ω2.

Solution:

(c) Show that in the regime where |C| < ω2, the period of oscillations is

T = 4

√
L

g
K(sin(x0/2)),
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where ẋ = 0 when x = x0 and K is the complete elliptic integral of the first kind,
defined by

K(α) :=

∫ π/2

0

1√
1− α2 sin2(u)

du.

Hint : Derive an integral expression for T and then perform the change of variables

sin(u) =
sin(x/2)

sin(x0/2)
.

Solution:

(d) For small amplitude oscillations, the pendulum equation can be approximated by the
linear equation

ẍ+ ω2x = 0.

Solve this equation for the initial conditions x(0) = A, ẋ(0) = 0 and sketch the phase-
plane for different values of A. Compare with the phase plane for the full-nonlinear
equation in part (b).

Solution:

(e) Write down Hamilton’s equations for the pendulum and show that they are equivalent
to the second order pendulum equation.

Solution:

2. The displacement x of a spring-mounted mass under the action of dry friction is assumed
to satisfy

mẍ+ kx = F0sgn(v0 − ẋ). (1.6.2)

An example would be a mass m connected to a fixed support by a spring with stiffness k
and resting on a conveyor belt moving with speed v0. F0 is the frictional force between the
mass and the belt. Set m = k = 1 for convenience and let y = ẋ.

(a) Calculate the phase paths in the (x, y) plane and draw the phase diagram. Hint : any
trajectory that hits the line y = v0 and |x| < F0 moves horizontally at a rate v0 to the
point x = F0 and y = v0. Deduce that the system ultimately converges into a limit
cycle oscillation. What happens if v0 = 0?

Solution:

(b) Suppose v0 = 0 and the initial conditions are x = x0 > 0, ẋ = 0. Show that the phase
path will spiral exactly n times before entering an equilibrium if

(4n− 1)F0 < x0 < (4n+ 1)F0.
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Solution:

(c) Suppose v0 = 0 and the initial conditions at t = 0 are x = x0 > 3F0 and ẋ = 0.
Subsequently, whenever x = −α where 2F0 = −x0 < −α < 0 and ẋ > 0, a trigger
operates to increase suddenly the forward velocity so that the kinetic energy increases
by a constant amount E. Show that if E > 8F 2

0 then a periodic motion is approached
and show that the largest value of x in the periodic motion is F0 + E/(4F0).

Solution:

(d) In part (b), suppose that the energy is increase by E at x = −α for both ẋ < 0 and
ẋ > 0; that is, there are two injections of energy per cycle. Show that periodic motion
is possible if E > 6F 2

0 , and find the amplitude of the oscillation.

Solution:

3. The interaction between two species is governed by the deterministic model{
Ḣ = (a1 − b1H − c1P )H,

Ṗ = (−a2 + c2H)P,

where H ≥ 0 is the population of the host or prey and P ≥ 0 is the population of the
parasite or predator. All constants are positive. Find the fixed points of the system, identify
nullclines and sketch the phase diagram. Hint : There can be either 2 or 3 fixed points.

Solution:

4. The response of a certain biological oscillator to a stimulus given by a constant b is described
by {

ẋ = x− ay + b,

ẏ = x− cy,

where x, y ≥ 0. Note if x = 0 and y > b/a then we simply set ẋ = 0. Show that when c < 1
and 4a > (1 + c)2, then there exists a limit cycle, part of which lies on the y-axis, whose
period is independent of b. Sketch the corresponding solution.

Solution:

5. Show that the initial value problem

ẋ = |x|1/2, x(0) = 0,

has four different solutions through the origin. Sketch these solutions in the (t, x)-plane.
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Solution:

6. Consider the initial value problem ẋ = x2, x(0) = 1.

(a) Find the first three successive approximations u1(t), u2(t), u3(t). Use mathematical in-
duction to show that for n ≥ 1,

un(t) = 1 + t+ . . .+ tn +O(tn+1) as t −→ 0.

Solution:

(b) Solve the IVP and show that the function x(t) =
1

1− t
is a solution to the IVP on the

interval (−∞, 1). Also show that the first n+ 1 terms in un(t) agree with the first n+ 1

terms in the Taylor series for x(t) =
1

1− t
about x = 0.

Solution:

7. Let f ∈ C1(U ;Rn), where U ⊂ Rn and x0 ∈ U . Given the Banach space X = C([0, T ];Rn)
with norm ‖x| = max

t∈[0,T ]
|x(t)|, let

K(x)(t) = x0 +

∫ t

0

f(x(s)) ds,

for x ∈ X. Define V = {x ∈ X : ‖x − x0‖ ≤ ε} for fixed ε > 0 and suppose K(x) ∈ V
(which holds for sufficiently small T > 0, so that K : V −→ V with V a closed subset of X.

(a) Using the fact that f is locally Lipschitz in U with Lipschitz constant L0, and taking
x, y ∈ V , show that

|K(x(t))−K(y(t))| ≤ L0t‖x− y‖.

Hence, show that
‖Kx−Ky‖ ≤ L0T‖x− y‖, x, y ∈ V.

Solution:

(b) Choosing T < 1/L0, apply the contraction mapping principle to show that the integral
equation has a unique continuous solution x(t) for all t ∈ [0, T ] and sufficiently small T .
Hence establish the existence and uniqueness of the initial value problem

dx

dt
= f(x), x(0) = x0.
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Solution:

8. Consider the dynamical system described by
ẋ = −y + x(1− z2 − x2 − y2)

ẏ = x+ y(1− z2 − x2 − y2)

ż = 0.

Determine the invariant sets and attracting set of the system. Determine the ω-limit set of
any trajectory for which |z(0)| < 1. Sketch the flow.

Solution:

9. Consider the dynamical system described by
ẋ = −y + x(1− x2 − y2)

ẏ = x+ y(1− x2 − y2)

ż = α > 0.

(a) Determine the invariant sets and attracting set of the system. Sketch the flow.

Solution:

(b) Describe what happens to the flow if we identify the points (x, y, 0) and (x, y, 2π) in
the planes z = 0 and z = 2π. Hint : One of the invariant sets becomes a torus with
x2 + y2 = 1.

Solution:

(c) By explicitly constructing solutions of the invariant torus x2 + y2 = 1, 0 ≤ z < 2π, show
that the torus is only an attractor if α is irrational.

Solution:

10. Use the Poincaré-Bendixson Theorem and the fact that the planar system{
ẋ = x− y − x3

ẏ = x+ y − y3,

has only one critical point at the origin to show that this system has a periodic orbit in the
annular region

A = {x ∈ R2 : 1 < |x| <
√

2}.
Hint : Convert to polar coordinates and show that for all ε > 0, we have ṙ < 0 on the circle
r =
√

2 + ε and ṙ > 0 on the circle r = 1 − ε. Then use the Poincaré-Bendixson Theorem
to show that this implies there is a limit cycle in the closure of A, and then show that no
limit cycle can have a point in common with either one of the circles r = 1 or r =

√
2.
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Solution:

11. Show that the system {
ẋ = x− rx− ry + xy,

ẏ = y − ry + rx− x2,

can be written in polar coordinates as ṙ = r(1−r) and θ̇ = r(1−cos θ). Show that it has an
unstable node at the origin and a saddle at (1, 0). Use this information and the Poincaré-
Bendixson Theorem to sketch the phase portrait and then deduce that for all (x, y) 6= (0, 0),
the flow φt(x, y) −→ (1, 0) as t −→∞ but that (1, 0) is not linearly stable.

Solution:



Chapter 2

Linear Systems and Stability of
Nonlinear Systems

2.1 Autonomous Linear Systems

We begin with the study of autonomous linear first order system

ẋ(t) = Ax(t), x(0) = x0 ∈ Rn, (2.1.1)

where A ∈ Rn×n. If A ∈ R, it follows from separation of variables that the solution to
(2.1.1) is given by x(t) = x0e

At. This result generalises to A ∈ Rn×n, but it requires some
understanding of the term eAt.

2.1.1 Matrix Exponential

Definition 2.1.1 (Matrix Exponential). Let A ∈ Rn×n. The exponential of A is defined by
the power series

eA =
∞∑
k=0

Ak

k!
. (2.1.2)

Theorem 2.1.2. For any A ∈ Rn×n, the power series (2.1.2) is absolutely convergent. That
is, eA is well-defined.

Proof. Recall that the operator norm/induced matrix norm of a matrix A ∈ Rn×n is defined
to be

‖A‖ = sup
x∈Rn,x 6=0

‖Ax‖
‖x‖

= sup
x∈Rn,‖x‖=1

‖Ax‖.

Observe that ‖Ak‖ ≤ ‖A‖k for every k ≥ 1. Indeed,

‖AB‖ = sup
x∈Rn,‖x‖=1

‖ABx‖ ≤ sup
x∈Rn,‖x‖=1

‖A‖‖Bx‖ = ‖A‖‖B‖.

This immediately implies

∞∑
k=0

‖Ak‖
k!
≤

∞∑
k=0

‖A‖k

k!
= e‖A‖ <∞.

�

27
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Theorem 2.1.3. Let A ∈ Rn×n be a constant coefficient matrix. The unique solution of (2.1.1)
is x(t) = etAx0.

Proof. Let Em(t) =
m∑
k=0

tkAk

k!
, then Em(t) ∈ C1(R;Rn×n) and

Ėm(t) =
d

dt

(
m∑
k=0

tkAk

k!

)
=

m∑
k=1

tk−1Ak

(k − 1)!
= A

m∑
k=1

tk−1Ak−1

(k − 1)!
= AEm−1(t).

Theorem 2.1.2 together with the Weierstrass M-test gives uniform convergence of Em(t). It
follows that Ėm(t) converges uniformly and lim

m→∞
Em(t) = E(t) is differentiable with derivative

Ė(t) = AE(t). Hence,

d

dt
(etAx0) =

d

dt
(etA)x0 = AetAx0 = Ax(t).

To prove uniqueness, suppose y(t) is another solution with y(0) = x0. Set z(t) = e−tAy(t),
then ż = −Ae−tAy+e−tAẏ = 0. This implies that z(t) = constant = x0, since z(0) = y(0) = x0.

�

Remark 2.1.4. We are able to deduce inductively from the relation Ė(t) = AE(t) that
E(t) ∈ C∞(R;Rn×n).

2.1.2 Normal Forms

Even though we show existence and uniqueness of solution to (2.1.1), in order to understand
the dynamics of (2.1.1), we need to explicitly compute the matrix exponential etA. This is
closedly related to the eigenvalues of the matrix A, which should not be surprising at all!

Real Distinct Eigenvalues

Suppose A has n distinct eigenvalues (λj)
n
j=1, with corresponding eigenvectors (ej)

n
j=1. They

satisfy Aλj = λjej for each j = 1, . . . , n. Introducing the matrix P = [e1, . . . , en], with
eigenvectors as columns. Since we have distinct eigenvalues, the set of eigenvectors is linearly
independent and det(P ) 6= 0. Also,

AP = [Ae1, . . . , Aen] = [λ1e1, . . . , λnen]

= [e1, . . . , en]diag(λ1, . . . , λn)

= PΛ, or Λ = P−1AP.

Now, performing a change of variable x = Py and using ẋ = Ax yields

ẏ = P−1ẋ = P−1Ax = P−1APy = Λy.

Now that the system is decoupled, we can solve each of them separately, i.e.

ẏj = λjyj =⇒ yj(t) = eλjtyj(0) for each j = 1, . . . , n.
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In vector form, we have {
y(t) = etΛy(0),

etΛ = diag (eλ1t, . . . , eλnt).

Hence, x(t) = Py(t) = PetΛy(0) = PetΛP−1x(0) which gives

etA = PetΛP−1.

Remark 2.1.5. Alternatively, we can write down the general solution of (2.1.1) as
x(t) =

n∑
j=1

cje
λjtej

x(0) =
n∑
j=1

cjej = Pc.

Define a fundamental matrix Ψ(t) = PetΛ = [eλ1te1, . . . , e
λnten], then

c = P−1x(0) = Ψ−1(0)x(0)

=⇒ x(t) = Ψ(t)c = Ψ(t)Ψ−1(0)x(0).

Conjugate Pair of Complex Eigenvalues

Suppose that A is a 2× 2 matrix with a pair of complex conjugate eigenvalues ρ± iω. There
exists a complex eigenvector e1 ∈ C2 such that

Ae1 = (ρ+ iω)e1 and A∗e∗1 = (ρ− iω)e∗1.

Looking at both real part and imaginary part of Ae1:

Ae1 = A[Re(e1) + iIm(e1)]

Ae1 = (ρ+ iω)e1 = Re[(ρ+ iω)e1] + iIm[(ρ+ iω)e1],

which gives A[Re(e1)] = Re[(ρ + iω)e1] and A[Im(e1)] = Im[(ρ + iω)e1]. Introducing P =
[Im(e1),Re(e1)], we see that

AP =
[
A[Im(e1)], A[Re(e1)]

]
=
[
Im[(ρ+ iω)e1],Re[(ρ+ iω)e1]

]
=
[
ρIm(e1) + ωRe(e1), ρRe(e1)− ωIm(e1)

]
= P

ρ −ω
ω ρ

 , or Λ =

ρ −ω
ω ρ

 = P−1AP.
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As before, performing a change of variable x = Py and using ẋ = Ax gives

ẏ = Λy =⇒ y(t) = etΛy(0).

Decompose Λ = D + C, where

D =

ρ 0

0 ρ

 , C =

0 −ω
ω 0

 .
Since DC = CD, it follows that

etΛ = etDetC =

eρt 0

0 eρt

 ∞∑
k=0

0 −ω
ω 0

k 1

k!
.

Note that we have the following recurrence relation for C:

C2n = (−1)n

ω2n 0

0 ω2n

 , C2n+1 = (−1)n

 0 −ω2n+1

ω2n+1 0



=⇒ etC =

cos (ωt) − sin (ωt)

sin (ωt) cos (ωt)

 .
Hence, x(t) = Py(t) = PetΛy(0) = PetΛP−1x(0) which gives

etA = Peρt

cos (ωt) − sin (ωt)

sin (ωt) cos (ωt)

P−1.

Theorem 2.1.6. Let A ∈ Rn×n with

(a) k distinct real eigenvalues λ1, . . . , λk, and

(b) m =
n− k

2
distinct complex conjugate eigenvalues ρ1 ± iω1, . . . , ρm ± iωm.

There exists an invertible matrix P such that
P−1AP = Λ = diag (λ1, . . . , λk, B1, . . . , Bm)

Bj =

ρj −ωj
ωj ρj

 .
Moreover, etA = PetΛP−1, with

etΛ = diag
(
eλ1t, . . . , eλkt, eB1t, . . . , eBmt

)
eBjt = eρjt

cos (ωj(t)) − sin (ωj(t))

sin (ωj(t)) cos (ωj(t))

 .
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Degenerate Eigenvalues

Suppose that A ∈ Rn×n has p distinct eigenvalues λ1, . . . , λp, with p < n. The corresponding
characteristics polynomial of A is

det{(A− sI)} =

p∏
k=1

(λk − s)nk .

where nk is the algebraic multiplicity of λk. Another related quantity is the so called
geometric multiplicity, which is defined to be dim(N (A−λjI)). The generalised eigenspace
of λk is defined to be

Ek =
{
x ∈ Rn : (A− λkI)nkx = 0

}
.

Associated with each degenerate eigenvalue are nk linearly independent solutions of the form
P1(t)eλkt, . . . , Pnk(t)e

λkt, where Pj(t) are vector polynomials of degree less than nk.

Example 2.1.7. Suppose A ∈ R2×2 with a degenerate eigenvalue λ. Then (A− λI)2x = 0 for
all x ∈ R2 since A satisfies its own characteristics equation (Cayley-Hamilton theorem).

• Either (A− λI)x = 0 for all x ∈ R2 =⇒ A =

λ 0

0 λ

,

• or there exists a non-trivial e2 6= 0 such that (A− λI)e2 6= 0.
Define e1 = (A− λI)e2, then (A− λI)e1 = (A− λI)2e2 = 0. This implies that e1 is an
eigenvector of A with respect to λ.{

Ae1 = λe1.

Ae2 = e1 + λe2.
=⇒ A

[
e1, e2

]
=
[
e1, e2

]λ 1

0 λ



Thus, set P = [e1, e2], we see that P−1AP = Λ =

λ 1

0 λ

.

• In the transformed linear system for y = P−1x, we have that y = Λy, i.e.{
ẏ1 = λy1 + y2

ẏ2 = λy2

=⇒

{
y1(t) = eλt[y1(0) + y2(0)t]

y2(t) = eλty2(0)

2.2 Non-Autonomous Linear Systems

2.2.1 Homogeneous Equation

We study the homogeneous non-autonomous linear first order system

ẋ(t) = A(t)x(t), x(t0) = x0 ∈ Rn, (2.2.1)

where coefficients of the matrix A are functions of t. Appealing to the 1D case, where A(t)
is a real-valued function of time, it follows from method of integrating factors that the
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solution of (2.2.1) is given by x(t) = x0 exp

(∫ t

0

A(s) ds

)
. Unfortunately, this result does not

generalise to higher dimension; the problem lies on the fact that matrices do not commute in
general, which implies that the property eA(t)+B(t) = eA(t)eB(t) fails to hold in this case. We
begin by proving that the solution of (2.2.1) is unique, via an energy argument.

Theorem 2.2.1. There exists at most one solution x ∈ C1([t0, T ];Rn) of (2.2.1).

Proof. Suppose (2.2.1) has two solutions, and let z := x − y, then z satisfies (2.2.1) with
homogeneous initial condition z(t0) = 0. Taking the inner product of ż = Az against z yields

z · ż = z · (A(t)z) =⇒ d

dt
|z|2 = 2z · (A(t)z) ≤ 2‖A(t)‖F‖z‖2.

Let v(t) := |z(t)|2 ∈ C1([t0, T ];R) and a(t) := 2‖A(t)‖F ∈ C0([t0, T ];R). The method of
integrating factors then gives

v̇(t) ≤ a(t)v(t) =⇒ d

dt

{
v(t) exp

(
−
∫ t

t0

a(s) ds

)}
≤ 0.

Since v(t) ≥ 0 and v(t0) = 0, it follows that v ≡ 0 in [t0, T ].
�

Definition 2.2.2. Let (ψj(t))
n
j=1 ∈ C0(R;Rn) be a set of vector-valued functions, none of

which are identically zero, i.e. each ψj(t) has at least one non-trivial component. If there

exists a set of scalars (αj)
n
j=1, not all zero, such that

n∑
j=1

αjψj(t) = 0 for all t ∈ R, then the set

of vector-valued functions (ψj)
n
j=1 is said to be linearly dependent.

Theorem 2.2.3. Any set of (n + 1) non-zero solutions of the system ẋ = A(t)x is linearly
dependent in Rn.

Proof. This is a non-trivial result which we will prove by exploiting the uniqueness prop-
erty of solutions to the system ẋ = A(t)x. Consider any set of (n + 1) non-zero solutions
ψ1(t), . . . , ψn+1(t). For a fixed time t0 ∈ R, the (n+ 1) constant vectors ψ1(t0), . . . ψn+1(t0) are

linearly dependent in Rn, i.e. there exists constants (αj)
n+1
j=1 such that

n+1∑
j=1

αjψj(t0) = 0. Let

x(t) =
n+1∑
j=1

αjψj(t), then x(t0) = 0 and ẋ(t) = A(t)x(t). But the trivial solution x ≡ 0 is a

solution with initial condition x(t0) = 0. It follows from Theorem 2.2.1 that x(t) ≡ 0 for all t,
which implies that the set of (n+1) solutions {ψ1(t), . . . , ψn+1(t)} is linearly dependent. �

Theorem 2.2.4. There exists a set of n linearly independent solutions to the system ẋ =
A(t)x, x ∈ Rn.

Proof. By existence theorem of ODEs, there exists a set of n solutions {ψ1(t), . . . , ψn(t)} cor-
responding to n initial conditions, ψj(0) = ej, j = 1, . . . , n, where ej’s are the canonical basis
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vectors in Rn. We claim that since {ψ1(0), . . . , ψn(0)} is a linearly independent set, so is the
set {ψ1(t), . . . , ψn(t)}. Suppose not, by definition there exists scalars (αj)

n
j=1, not all zero,

such that
n∑
j=1

αjψj(t) = 0 for all t. In particular, we have that
n∑
j=1

αjψj(0) = 0, which is a

contradiction.
�

Corollary 2.2.5. Let {ψ1(t), . . . , ψn(t)} be any set of n linearly independent solutions of ẋ =
A(t)x, x ∈ Rn. Then every solution is a linear combination of {ψ1(t), . . . , ψn(t)}.

Proof. For any non-trivial solution ψ(t) of ẋ = A(t)x, the set {ψ(t), ψ1(t), . . . , ψn(t)} is linearly

dependent. Theorem 2.2.3 implies that ψ(t) =
n∑
j=1

αjψj(t).

�

Remark 2.2.6. Alternatively, we know that {ψj(t0)}nj=1 is a basis for Rn, so there exists scalars

(αj)
n
j=1 such that ψ(t0) =

n∑
j=1

αjψj(t0). Observe that ψ(t) and
n∑
j=1

αjψj(t) are both solutions

with the same initial conditions. It follows from Theorem 2.2.1 that ψ(t) =
n∑
j=1

αjψj(t).

Definition 2.2.7. Let {ψ1(t), . . . , ψn(t)} be n linearly independent solutions of ẋ = A(t)x,
x ∈ Rn. A fundamental matrix is defined to be

Ψ(t) =
[
ψ1(t), . . . , ψn(t)

]
.

Remark 2.2.8. Fundamental matrix is not unique. Indeed, it follows from Corollary 2.2.5 that
any 2 fundamental matrices Ψ1,Ψ2 are related by a non-singular constant matrix C, satisfying
Ψ2(t) = Ψ1(t)C.

Theorem 2.2.9. The solution of (2.2.1) is given by:

x(t) = Ψ(t)Ψ−1(t0)x0.

Proof. Choose a fundamental matrix Ψ(t), it follows from Corollary 2.2.5 that the solution
must be of the form x(t) = Ψ(t)a for some constant vector a ∈ Rn. Since x0 = Ψ(t0)a, it
follows that a = Ψ−1(t0)x0, where Ψ(t0) is invertible by linear independence of its columns.
Hence, x(t) = Ψ(t)a = Ψ(t)Ψ−1(t0)x0.

�

2.2.2 Inhomogeneous equation.

Having constructed a solution to the homogeneous problem, we consider the inhomogeneous,
non-autonomous linear system

ẋ(t) = A(t)x(t) + f(t), x(t0) = x0 ∈ Rn. (2.2.2)
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Inspired by Theorem 2.2.9, we make an ansatz of the form

x(t) = Ψ(t)Ψ−1(t0)[x0 + φ(t)], (2.2.3)

where φ(t) is a function to be determined. Note that φ(t0) = 0. A direct computation yields

ẋ = Ψ̇(t)Ψ−1(t0)[x0 + φ(t)] + Ψ(t)Ψ−1(t0)[φ̇(t)]. (2.2.4)

On the other hand, substituting the ansatz (2.2.3) into (2.2.2) yields

ẋ = A(t)
[
Ψ(t)Ψ−1(t0)[x0 + φ(t)]

]
+ f(t) = Ψ̇(t)Ψ−1(t0)[x0 + φ(t)] + f(t), (2.2.5)

since Ψ̇(t) = A(t)Ψ(t). Comparing (2.2.4) and (2.2.5), we see that

Ψ(t)Ψ−1(t0)φ̇(t) = f(t) =⇒ φ̇(t) = Ψ(t0)Ψ−1(t)f(t)

=⇒ φ(t) = Ψ(t0)

∫ t

t0

Ψ−1(s)f(s) ds.

Hence, we have the following formula for a solution of (2.2.4)

x(t) = Ψ(t)Ψ−1(t0)x0 + Ψ(t)

∫ t

t0

Ψ−1(s)f(s) ds.

Example 2.2.10. Consider the following inhomogeneous, non-autonomous linear system
ẋ1 = x2 + et

ẋ2 = x1

ẋ3 = te−t(x1 + x2) + x3 + 1

, with x0 =


0

1

−1


We see that

A(t) =


0 1 0

1 0 0

te−t te−t 1

 , f(t) =


et

0

1


• Consider the homogeneous equation:

ẋ1 = x2

ẋ2 = x1

ẋ3 = te−t(x1 + x2) + x3

Differentiating ẋ1 with respect to t gives ẍ1 = ẋ2 = x1 =⇒ x1(t) = et, e−t, 0.

(i)

x1

x2

 = et

1

1

 =⇒ ẋ3 − x3 = 2t, so that x3(t) = Cet − 2(1 + t).
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(ii)

x1

x2

 = e−t

 1

−1

 =⇒ ẋ3 − x3 = 0, so that x3(t) = Det.

(iii)

x1

x2

 =

0

0

 =⇒ ẋ3 − x3 = 0, so that x3(t) = Eet.

• A fundamental solution matrix is constructed by choosing constants C,D,E in each
cases; we want to avoid trivial solutions too. Remember, it doesn’t matter how we choose
these constants because any two fundamental matrices can be related by a non-singular
constant matrix.

Ψ(t) =


et e−t 0

et −e−t 0

−2(1 + t) 0 et


Computing its inverse:

Ψ−1(t) =
1

−2et


−1 −1 0

−e2t e2t 0

−2(1 + t)e−t −2(1 + t)e−t −2



=
1

2


e−t e−t 0

et −et 0

2(1 + t)e−2t 2(1 + t)e−2t 2e−t


Evaluating Ψ−1(t0) at t0 = 0:

Ψ−1(t0)
∣∣∣
t0=0

=
1

2


1 1 0

1 −1 0

2 2 2


• Hence, substituting everything into the formula gives us the following solution:

x1(t) =

(
3

4
+

1

2
t

)
et − 3

4
e−t

x2(t) =

(
1

4
+

1

2
t

)
et − 3

4
e−t

x3(t) = 3et − t2 − 3t− 4

2.2.3 Stability and Bounded Sets

As already mentioned, one of the key questions regarding the long term behaviour of a dynam-
ical system is stability of its solutions. There is no single concept of stability, in fact
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various different definitions are possible.

Definition 2.2.11. Consider the ODE ẋ = f(x, t), x ∈ Rn. Let φ(x, t) be the flow of f , with
φ(x, t0) = x0.

(a) φ(x, t) is said to be Lyapunov stable for t ≥ t0 if and only if for all ε > 0, there exists
δ = δ(ε, t0) > 0 such that

‖y0 − x0‖ < δ =⇒ ‖φ(y, t)− φ(x, t)‖ < ε for all t ≥ t0,

where φ(y, t) represents any other neighbouring flow.

– For an autonomous system, stability is independent of t0. Thus a solution is either
Lyapunov stable or unstable for all t0.

(b) φ(x, t) is said to be asymptotically stable for t ≥ t0 if φ(x, t) is Lyapunov stable for
t ≥ t0 and in addition, there exists η(t0) > 0 such that

‖y0 − x0‖ < η =⇒ lim
t→∞
‖φ(y, t)− φ(x, t)‖ = 0.

– η might be smaller than δ.

Theorem 2.2.12. For the regular linear system ẋ = A(t)x, the zero solution x∗(t) ≡ 0 is
Lyapunov stable on t ≥ t0 (t0 arbitrary) if and only if every solution is bounded as t −→∞.

Proof. Suppose that the zero solution x∗(t) ≡ 0 is Lyapunov stable. By definition, there exists
δ > 0 such that ‖x(t0)‖ < δ =⇒ ‖x(t)‖ < ε for all t ≥ t0. Consider the fundamental matrix

Ψ(t) =
[
ψ1(t), . . . , ψn(t)

]
satisfying the initial condition Ψ(t0) =

δ

2
I. From Corollary 2.2.5, we

know that any solution (with arbitrary initial conditions) can be written as x(t) = Ψ(t)c. For
any j = 1, . . . , n, since ‖ψj(t0)‖ = δ/2 < δ, Lyapunov stability implies that ‖ψj(t)‖ < ε. Thus,

‖x(t)‖ = ‖Ψ(t)c‖ =

∥∥∥∥∥
n∑
j=1

cjψj(t)

∥∥∥∥∥ ≤
n∑
j=1

|cj|‖ψj(t)‖ ≤ ε
n∑
j=1

|cj| <∞.

Conversely, suppose that every solution of ẋ = A(t)x is bounded. Let Ψ(t) be any funda-
mental matrix. Boundedness of solutions implies that there existsM > 0 such that ‖Ψ(t)‖ < M

for all t ≥ t0. Given any ε > 0, choose δ =
ε

M‖Ψ−1(x0)‖
> 0. Theorem 2.2.9 states that any

solution has the form x(t) = Ψ(t)Ψ−1(t0)x0. Thus, for ‖x(t0)‖ < δ we have

‖x(t)‖ ≤ ‖Ψ(t)‖‖Ψ−1(t0)‖‖x(t0)‖ ≤M‖Ψ−1(t0)‖δ = ε.

�

Theorem 2.2.13. All solutions of the inhomogeneous linear system ẋ = A(t)x(t) + f(t) have
the same Lyapunov stability property as the zero solution of homogeneous linear system ẏ =
A(t)y(t).
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Proof. Let x∗(t) be a solution of the inhomogeneous equation, whose stability we wish to
determine. Let x(t) be any another solution, and set y(t) = x(t)− x∗(t). It follows that{

ẏ(t) = A(t)y(t)

y(t0) = x(t0)− x∗(t0).

Lyapunov stability of x∗(t) means that for all ε > 0, there exists δ > 0 such that

‖x(t0)− x∗(t0)‖ < δ =⇒ ‖x(t)− x∗(t)‖ < ε for all t ≥ t0.

In terms of y, this is equivalent to ‖y(t0)‖ < δ =⇒ ‖y(t)‖ < ε, which is the condition for
Lyapunov stability of the zero solution.

�

2.2.4 Equations With Coefficients That Have A Limit

Consider the equation

ẋ = Ax+B(t)x, x ∈ Rn, (2.2.6)

where A ∈ Rn×n is non-singular and B(t) is continuous as a function of time. If lim
t→∞
‖B(t)‖ = 0,

then we might expect that solutions of (2.2.6) converges to solutions of ẋ = Ax, but this is not
true even in the one-dimensional case! This is a glimpse that non-autonomous linear systems
are dangerous!

Example 2.2.14. Consider ẍ− 2

t
ẋ+ x = 0, t ≥ 1. There are 2 linearly independent solutions

of the form: {
sin(t)− t cos(t)

cos(t) + t sin(t).

These are unbounded as t −→∞, whereas solutions of ẍ+ x = 0 are bounded.

If we view (2.2.6) as a special case of ẋ = C(t)x, where C(t) = A+B(t) is in some sense a
small perturbation away from the constant matrix A, then we have the following positive result.

Theorem 2.2.15. Consider the non-autonomous linear system (2.2.6) with B(t) continuous
for t ≥ t0 and

(a) the eigenvalues of A satisfy Re(λj) ≤ 0, j = 1, . . . , n,

(b) the eigenvalues of A for which Re(λj) = 0 are distinct, i.e. there are no degenerate pairs
of complex eigenvalue satisfying Re(λj) = 0,

(c)

∫ ∞
t0

‖B(t)‖ dt is bounded.

Then solutions of (2.2.6) are bounded and the zero solution x(t) ≡ 0 is Lyapunov stable.
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Proof. We use the variation of parameters method. Consider the ansatz x(t) := Ψ(t)z(t),
where Ψ(t) is the fundamental matrix of ẋ = Ax with Ψ(t0) = I, i.e. “formally speaking”
Ψ(t) = e(t−t0)A. A direct computation using Chain rule yields

ẋ = Ψ̇(t)z(t) + Ψ(t)ż(t) = AΨ(t)z(t) + Ψ(t)ż(t), (2.2.7)

since Ψ̇(t) = AΨ(t). On the other hand, substituting the ansatz into (2.2.6) yields

ẋ = Ax+B(t)x = AΨ(t)z(t) +B(t)Ψ(t)z(t). (2.2.8)

Comparing (2.2.7) and (2.2.8), we see that

Ψ(t)ż(t) = B(t)Ψ(t)z(t) =⇒ ż(t) = Ψ−1(t)B(t)Ψ(t)z(t)

=⇒ z(t) = z(t0) +

∫ t

t0

Ψ−1(s)B(s)Ψ(s)z(s) ds

Therefore,

x(t) = Ψ(t)z(t) = Ψ(t)

(
z(t0) +

∫ t

t0

Ψ−1(s)B(s)Ψ(s)z(s) ds

)
= Ψ(t)z(t0) +

∫ t

t0

[
Ψ(t)Ψ−1(s)

]
B(s)x(s) ds

Note the following:

x(t0) = Ψ(t0)z(t0) = z(t0)
[
since Ψ(t0) = I by construction

]
Ψ(t)Ψ−1(s) = etAΨ(t0)e−sAΨ(t0)

[
from Theorem 2.2.9

]
= eA(t−s)

[
since A commutes with itself

]
= Ψ(t− s).

Thus,

‖x(t)‖ =

∥∥∥∥Ψ(t)x0 +

∫ t

t0

Ψ(t− s)B(s)x(s) ds

∥∥∥∥
≤ ‖Ψ(t)‖‖x0‖+

∫ t

t0

‖Ψ(t− s)‖‖B(s)‖‖x(s)‖ ds

≤ C‖x0‖+

∫ t

t0

C‖B(s)‖‖x(s)‖ ds

where ‖Ψ(t)‖ is bounded for all t ≥ t0, since Re(λj) ≤ 0 for all j = 1, . . . , n by assumption.

Referring to Theorem 1.3.6, applying Gronwall’s inequality with v(t) = ‖x(t)‖, c(t) =
C‖x0‖, and u(t) = C‖B(t)‖ gives

‖x(t)‖ ≤ C‖x0‖ exp

(
C

∫ t

t0

‖B(s)‖ ds
)
< +∞,

since

∫ t

t0

‖B(s)‖ ds < ∞ by assumption (c). Hence, x(t) is bounded and by Theorem 2.2.12,

x ≡ 0 is Lyapunov stable.
�
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Remark 2.2.16. Note that Re(λj) ≤ 0 for all j = 1, . . . , n is not sufficient to establish bound-
edness of all solutions of (2.2.6).

Theorem 2.2.17. Consider the non-autonomous linear system (2.2.6) with B(t) continuous
for all t ≥ t0 and

(a) the eigenvalues of A satisfy Re(λj) < 0 for all j = 1, . . . , n,

(b) lim
t→∞
‖B(t)‖ = 0.

Then we have that lim
t→∞

x(t) = 0, and the zero solution x(t) ≡ 0 is asymptotically stable.

2.3 Floquet Theory

In this section, we consider a special case of the non-autonomous linear system

ẋ = P (t)x, x ∈ Rn, where P (t+ T ) = P (t) for all t ∈ R, (2.3.1)

i.e. P (·) is a T -periodic continuous matrix-valued function. Such equation arises when lin-
earising about a limit cycle solution on ẋ = f(x). Observe that if x(t) is a solution of (2.3.1),
then periodicity of P implies that x(t+ T ) is again a solution of (2.3.1). However, it does not
say that x(t) is periodic!

2.3.1 Floquet Multipliers

Theorem 2.3.1 (Floquet). The regular system (2.3.1) where P (t) is an n×n time-dependent
matrix with period T > 0 has at least 1 non-trivial solution χ(t), satisfying

χ(t+ T ) = µχ(t), t ∈ (−∞,∞),

where µ is called a Floquet multiplier.

Proof. Let Ψ(t) =
[
ψ1(t), . . . , ψn(t)

]
be a fundamental matrix of (2.3.1). It satisfies

Ψ̇(t) = P (t)Ψ(t) and Ψ̇(t+ T ) = P (t)Ψ(t+ T ), since P (·) is T − periodic.

Thus, Φ(t) : = Ψ(t + T ) is also a fundamental matrix of (2.3.1). Theorem 2.2.5 states that
φj(t) is a linear combination of {ψ1(t), . . . , ψn(t)}, i.e. there exists constant vectors ej ∈ Rn

such that φj(t) = Ψ(t)ej for every j = 1, . . . , n. We can now rewrite Φ(t) as

Φ(t) = Ψ(t+ T ) = Ψ(t)E, (2.3.2)

where E =
[
e1, . . . , en

]
∈ Rn×n is non-singular. Consider any eigenvalue µ of E with its

corresponding eigenvector v 6= 0, i.e. Ev = µv. Setting χ(t) = Ψ(t)v, we see that χ(t) 6= 0
since Ψ(t) is non-singular and v 6= 0. Moreover,

χ(t+ T ) = Ψ(t+ T )v = Ψ(t)Ev = µΨ(t)v = µχ(t).

�
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Remark 2.3.2. In the proof, we exploit the intrinsic periodic structure of Ψ(t) due to peri-
odicity of P (t). This theorem also suggest a positive result: there exists a periodic solution to
(2.3.1) if the Floquet multiplier µ = 1.

A natural question stems out from the previous theorem: Does µ affected by the choice
of fundamental matrix of (2.3.1)? This is answered in the next theorem, which states that
Floquet multipliers are intrinsic property of the periodic system (2.3.1).

Theorem 2.3.3. The Floquet multipliers µ are independent of the choice of fundamental matrix
of (2.3.1).

Proof. Let Ψ(t) and Ψ∗(t) be any 2 fundamental matrices of (2.3.1). Theorem 2.2.5 gives the
relation Ψ∗(t) = Ψ(t)A, where A ∈ Rn×n is some non-singular matrix. Using (2.3.2) from
Theorem 2.3.1, we have that

Ψ∗(t+ T ) = Ψ(t+ T )A = Ψ(t)EA = Ψ∗(t)A−1EA = Ψ∗(t)E∗.

Since E and E∗ are related by a similarity transformation, they have the same eigenvalues.
More precisely,

det(E∗ − µI) = det
(
A−1EA− µA−1A

)
= det

(
A−1(E − µI)A

)
= det

(
A−1

)
det(E − µI) det(A)

= det(E − µI).

�

Remark 2.3.4. One often choose Ψ(t) satisfying Ψ(0) = I if possible, so that

Ψ(0 + T ) = Ψ(0)E = E, i .e. Ψ(T ) = E.

Definition 2.3.5. Let µ be a Floquet multiplier of (2.3.1). A Floquet exponent ρ ∈ C is a
complex number such that µ = eρT .

• Note that Floquet exponents are not unique, since ρ is defined up to an added multiple

of
2πim

T
,m ∈ Z due to periodicity of the complex exponential function eiz. Thus, we

usually make the restriction −π < Im(ρT ) < π.

Theorem 2.3.6. Suppose that the matrix E, for which Ψ(t + T ) = Ψ(t)E has n distinct
eigenvalues (µj)

n
j=1, not necessarily real. The periodic system (2.3.1) has n linearly independent

solutions of the form

χj(t) = pj(t)e
ρjt, with pj(t) being T − periodic. (2.3.3)
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Proof. From Floquet theorem 2.3.1, for every µj = eρjT , j = 1, . . . , n, there exists a non-trivial
solution χj(t) such that

χj(t+ T ) = µjχj(t) = eρjTχj(t) =⇒ χj(t+ T )e−ρjT = χj(t)

=⇒ χj(t+ T )e−ρj(t+T ) = e−ρjtχj(t).

Setting pj(t) = χj(t)e
−ρjt, we see that pj(t) is T -periodic.

Recall that in the proof of Floquet theorem 2.3.1, we write χj(t) = Ψ(t)vj, where vj 6= 0
is an eigenvector corresponding to eigenvalue µj. Since distinct eigenvalues implies linearly
independent set of eigenvectors and Ψ(t) is by definition a non-singular matrix, we conclude
that the set of solutions {χ1(t), . . . , χn(t)} is linearly independent in Rn.

�

Remark 2.3.7. Note that existence of solutions of the form (2.3.3) continues to hold without
the assumption that E has distinct eigenvalues.

Example 2.3.8. Consider the periodic systemẋ1

ẋ2

 =

1 1

0 h(t)

x1

x2

 , h(t) =
cos(t) + sin(t)

2 + sin(t)− cos(t)
,

where h(·) has period T = 2π.

• x2 can be solved explicitly. Setting f(t) := 2 + sin(t)− cos(t), we see that

ẋ2(t) =
ḟ(t)

f(t)
x2(t) =⇒ f(t)ẋ2(t)− x2(t)ḟ(t) = 0 =⇒ d

dt

(
x2(t)

f(t)

)
= 0.

The solution is given by x2(t) = bf(t) = b[2 + sin(t)− cos(t)].

• We can now solve for x1. Using method of integrating factors,

ẋ1 − x1 = b[2 + sin(t)− cos(t)]

d

dt

[
e−tx1

]
= be−t[2 + sin(t)− cos(t)]

d

dt

[
e−tx1

]
= − d

dt

[
be−t(2 + sin(t))

]
e−tx1 = a− be−t[2 + sin(t)]

x1(t) = aet − b[2 + sin(t)].

• Next, we construct a fundamental matrix Ψ(t) by choosing constants a, b. Setting (a, b) =
(0, 1) and (a, b) = (1, 0), we obtain two linearly independent solutions and so

Ψ(t) =

 −2− sin(t) et

2 + sin(t)− cos(t) 0
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Now, introduce the non-singular matrix E such that Ψ(t + 2π) = Ψ(t)E for any t ∈ R.
In particular,

E = Ψ−1(0)Ψ(2π) =

−2 1

1 0

−1 −2 e2π

1 0

 =

1 0

0 e2π


which gives µ1 = 1 = e2πρ1 and µ2 = e2π = e2πρ2 , or equivalently ρ1 = 0 and ρ2 = 1.

• Hence, the general solution is given byx1

x2

 = b

 −2− sin(t)

2 + sin(t)− cos(t)

+ a

1

0

 et
= bp1(t)eρ1t + ap2(t)eρ2t

= bp1(t) + ap2(t)et.

Note that p1, p2 are 2π-periodic, but x(t) is not even periodic.

Remark 2.3.9. Observe that fixing a and b is the same as fixing initial conditions. In gen-
eral, the linear combination (a, b) = (1, 0) and (a, b) = (0, 1) almost always gives two linearly
independent solutions of the system.

2.3.2 Stability of Limit Cycles

As already mentioned, the periodic system (2.3.1) arises when one linearises about a limit
cycle on the nonlinear autonomous system ẋ = f(x), x ∈ Rn. Suppose u(t) is such a limit cycle
solution with period T . It follows that u̇(t) = f(u(t)). Differentiating with respect to t gives

ü = Df(u(t))u̇,

where Df(u(t)) is the Jacobian evaluated at the limit cycle solution. Observe that this equa-
tion implies that Df(u(t)) is T -periodic, since u(t) is T -periodic (which means both u̇ and ü
are both T -periodic too).

On the other hand, setting v(t) := x(t)− u(t) and linearising yields

v̇(t) = ẋ(t)− u̇(t)

= f(x(t))− f(u(t))

≈ Df(u(t))[x(t)− u(t)]

= Df(u(t))v(t)

= P (t)v(t).

Hence, one possible solution of v̇ = P (t)v is v(t) = u̇(t). Since u and u̇ are both T -periodic,
it follows that there exists a Floquet multiplier µ = 1. To see this, recall from Theorem 2.2.9
that the solution of v̇ = P (t)v(t) is given by

v(t) = Ψ(t)Ψ−1(0)v(0), (2.3.4)
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where Ψ(t) is any fundamental matrix of the periodic system. In particular, we choose a
fundamental matrix Ψ(t) such that Ψ(0) = I, it satisfies Ψ(T ) = E from Remark 2.3.4.
Substituting v(t) = u̇(t) into (2.3.4) yields

u̇(t) = Ψ(t)Ψ−1(0)u̇(0) =⇒ u̇(T ) = u̇(0) = Ψ(T )u̇(0).

It follows that E has an eigenvalue µ = 1, which is the desired unit Floquet multiplier.

Remark 2.3.10.

1. We need to look at the linearised system to relate to the concept we discussed before.

2. u̇(t) is the vector tangential to the limit cycle at time t. Write u̇ = Ψ(t)v, where v is an
eigenvector corresponding to µ = 1. Assuming that Ψ(0) = I, we see that a is tangential
to the limit cycle at time t = 0, which is consistent with what we showed above.

3. The existence of an unit Floquet multiplier µ = 1 reflects the time or phase-shift invari-
ance of an autonomous system, i.e. phase shift around the limit cycle.

4. The limit cycle is linearly stable (up to small perturbations) provided that the other n−1
Floquet multipliers lie inside the unit circle in the complex plane C.

Floquet theory is such a powerful tool in periodic dynamical system that computing Flo-
quet multipliers becomes an important subject itself. Theoretically, one has to first construct
a fundamental matrix of the system, which is a daunting task itself since this amounts to
solving the periodic system. Fortunately, the periodic matrix P (t) allows us to extract some
information about Floquet multipliers, as we shall see in Theorem 2.3.13.

Definition 2.3.11. Let Ψ(t) =
[
ψ1(t), . . . , ψn(t)

]
be a fundamental matrix satisfying ψ̇j(t) =

A(t)ψj(t). The Wronskian of Ψ(t) is defined as W (t) = det(Ψ(t)) .

Theorem 2.3.12 (Liouville/Abel Identity). Let Ψ(t) be any fundamental matrix of the non-
autonomous linear system ẋ = A(t)x. For all initial time t0, we have the following expression
for the Wronskian of Ψ(t):

W (t) = W (t0) exp

(∫ t

t0

tr(A(s)) ds

)
.

Proof. Using Leibniz rule of calculus,

d

dt
[W (t)] =

n∑
k=1

∆k(t)

where ∆k(t) is W (t) with k-th row replaced by ψ̇jk instead of ψjk.

∆1 = det


ψ̇11 · · · ψ̇n1

ψ12 · · · ψn2

...
. . .

...

ψ1n · · · ψnn
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= det



n∑
k=1

A1kψ1k · · ·
n∑
k=1

A1kψnk

ψ12 · · · ψn2

...
...

...

ψ1n · · · ψnn



=
n∑
k=1

A1k det


ψ1k · · · ψnk

ψ12 · · · ψn2

...
...

...

ψ1n · · · ψnn


= A11W (t)

since we have 2 identical rows for every k 6= 1 which results in zero determinant. Therefore,

d

dt
[W (t)] =

n∑
k=1

AkkW (t) = Tr(A(t))W (t)

=⇒ W (t) = W (t0) exp

(∫ t

t0

Tr(A(s)) ds

)
.

�

Theorem 2.3.13. The Floquet multipliers of a periodic system of the form (2.3.1) satisfy

n∏
j=1

µj = exp

(∫ T

0

tr(P (s)) ds

)
.

Proof. Let Ψ(t) be the fundamental matrix of (2.3.1) satisfying Ψ(0) = I, so that E = Ψ(T ).
We know from Floquet Theorem 2.3.1 that the Floquet multipliers µj satisfy the characteristics
equation:

0 = det(E − µI) =
n∏
j=1

(µj − µ).

By Theorem 2.3.12, we have that (using W (0) = 1)

n∏
j=1

µj = det(E) = det(Ψ(T )) = W (T ) = exp

(∫ T

0

tr(P (s)) ds

)
.

�

Example 2.3.14. Consider a nonlinear damping oscillator given by ẍ + f(x)ẋ + g(x) = 0.
Suppose that it has a T -periodic solution φ(t). Rewrite equation as{

ẋ = y

ẏ = −f(x)y − g(x).
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Linearising about φ(t) givesẋ
ẏ

 =

 0 1

−Df(φ(t))y −Dg(φ(t)) −f(φ(t))

x
y

 = P (t)

x
y


where x, y are now some small perturbations about φ. Since we must have µ1 = 1,

µ2 = exp

(∫ T

0

tr(P (s)) ds

)
= exp

(
−
∫ T

0

f(φ(s)) ds

)
.

Thus, φ(t) is linearly stable provided that

∫ T

0

f(φ(s)) ds ≥ 0.

2.3.3 Mathieu Equation

Consider the Mathieu equation

ẍ+ [α + β cos(t)]x = 0.

This can be written as ẋ = P (t)x, x ∈ R2, where P (t) =

 0 1

−α− β cos(t) 0

. There is no

explicit formula for the Floquet multipliers for all α, β ∈ R. However, since tr(P (t)) = 0,
it follows that the Floquet multipliers satisfy µ1µ2 = 1. Hence, µ1, µ2 are solutions of the
quadratic characteristic equation

µ2 − φ(α, β)µ+ 1 = 0, with roots µ1,2 =
1

2

(
φ±

√
φ2 − 4

)
.

In principle, φ(α, β) can be determined for particular α and β. Although we have no explicit
formula for φ(α, β), we can still deduce the behaviour of solutions based on values of φ.

1. φ > 2, so that µ1,2 are real, positive and distinct.

• Setting µ1,2 = e±σ2π, σ > 0, we can write the general solution as:

x(t) = C1p1(t)eσt + C2p2(t)e−σt,

where pj(t) are 2π-periodic.

• Solution is unbounded.

2. φ = 2 (degenerate case), so that µ1 = µ2 = 1.

• We have that ρ1 = ρ2 = 0, so the general solution is given by

x(t) = C1p1(t) + C2p2(t),

where pj(t) are 2π-periodic.
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• There is one solution of period 2π that is stable. It can be shown that the other
solution is unstable.

3. −2 < φ < 2, so that µ1,2 form a complex conjugate pair.

• Since µ1µ2 = 1, we must have ρ1,2 = ±iν, ν ∈ R, otherwise ea+iνea−iν = e2a 6= 1.
Thus, the general solution is given by

x(t) = C1p1(t)eiνt + C2p2(t)e−iνt.

where pj(t) are 2π-periodic.

• Solution is bounded and oscillatory, but is not periodic in general as there are 2
frequencies 2π and ν. Solution is called quasiperiodic if ν/2π is irrational.

• Circle map: θn+1 = θn + τ .

– If τ is rational, then eventually the trajectory becomes a periodic orbit.

– If τ is irrational, we have a dense orbit instead.

4. φ = −2, so that µ1 = µ2 = −1.

• µ1,2 = −1 = e(ρ1,2)2π =⇒ ρ1,2 = i/2, so the general solution as

x(t) = C1p1(t)eit/2 + C2p2(t)eit/2,

where pj(t) are 2π-periodic.

• There exists a 4π-periodic solution, and the other solution is unbounded.

5. φ < −2, so that µ1,2 are real, negative and distinct.

• Observe that µ1,2 = 1 implies that ρ1 = −ρ2. To enforce µ1,2 to take negative value,
µ1,2 must have the form

µ1,2 = exp

{(
±σ +

i

2

)
2π

}
, since exp

{(
i

2

)
(2π)

}
= −1.

Thus, the general solution is given by

x(t) = C1p1(t)e(σ+i/2)t + C2p2(t)e(−σ+i/2)t,

where pj(t) are 2π-periodic.

• Solution is unbounded.

• The general solution can be rewritten in a more compact form

x(t) = C1q1(t)eσt + C2q2(t)e−σt,

where qj(t) = pj(t)e
(i/2)t is now 4π-periodic.
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2.3.4 Transition Curves

The curves φ(α, β) = ±2 separates region in (α, β) parameter space where all solutions are
bounded (|φ| < 2) from region where unbounded solutions exist (|φ| > 2). Although φ(α, β) is
not known explicitly, we do know that along the transition curve φ = ±2, there are solutions
of period 2π or of period 4π. We illustrate how one can determine the transition curves using
Fourier series.

The region φ = 2, corresponding to 2π-periodic solutions

The 2π-periodic solution can be represented as

x(t) =
∞∑

n=−∞

cne
int,

where c−n = c̄n since x(t) is real. Substituting this representation into Mathieu equation yields

−
∞∑

n=−∞

n2cne
int +

[
α +

β

2
(eit + e−it)

] ∞∑
n=−∞

cne
int = 0.

By comparing coefficients of the term eint, we obtain the following recurrence relation

1

2
βcn+1 + (α− n2)cn +

1

2
βcn−1 = 0.

Assuming α 6= n2, the recurrence relation becomes

γncn+1 + cn + γncn−1 = 0, where γn =
1

2

(
β

α− n2

)
, n = 0,±1,±2, . . . .

Note that γ−n = γn. This can be written as an infinite matrix equation Γc = 0, where

Γ(α, β) =



. . . . . . . . . . . . . . . · · · · · ·

. . . γ1 1 γ1 0 0 · · ·

. . . 0 γ0 1 γ0 0
. . .

· · · 0 0 γ1 1 γ1
. . .

· · · · · · . . . . . . . . . . . . . . .


and non-trivial solutions exist if det(Γ(α, β)) = 0. Hence, the curve φ(α, β) = 2 is equivalent
to the curve along which det(Γ(α, β)) = 0.

The region φ = −2, corresponding to 4π-periodic solutions

The 4π-periodic solution can be represented as

x(t) =
∞∑

n=−∞

dne
int/2.
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Substituting this representation into Mathieu equation yields

−1

4

∞∑
n=−∞

n2dne
int/2 +

[
α +

β

2
(eit + e−it)

] ∞∑
n=−∞

dne
int/2 = 0.

By comparing coefficients of eint/2, we obtain the following recurrence relation

1

2
βdn+2 +

(
α− n2

4

)
dn +

1

2
βdn−2 = 0.

We have two branches of solutions, since this set of equations splits into 2 independent sets,
namely odd and even n.

1. Even n = 2m, which leads to the condition det(Γ(α, β)) = 0. This is consistent since
2π-periodic solutions are also 4π-periodic.

2. Odd n = 2m− 1, which leads to 4π-periodic solutions. Assuming that α 6= 1

4
(2m− 1)2,

the recurrence relation can be written as an infinite matrix equation Γ̂d = 0:

Γ̂ =



. . . . . . . . . . . . . . . . . . · · · · · ·

. . . δ2 1 δ2 0 0 0 · · ·

. . . 0 δ1 1 δ1 0 0
. . .

. . . 0 0 δ1 1 δ1 0
. . .

· · · 0 0 0 δ2 1 δ2
. . .

· · · · · · . . . . . . . . . . . . . . . . . .


with δm =

1

2

[
β

α− 1
4
(2m− 1)2

]
, m = ±1,±2, . . . .

2.3.5 Perturbation Analysis of Transition Curves

Suppose |β| is small, we can use regular perturbation method to find the transition curves,
i.e. we take transition curves to be

α = α(β) = α0 + βα1 + β2α2 + . . . , (2.3.5)

with corresponding 2π or 4π periodic solutions

x(t) = x0(t) + βx1(t) + β2x2(t) + . . . . (2.3.6)

Substituting both (2.3.5) and (2.3.6) into Mathieu equation, and expanding in powers of β
yields

(ẍ0 + βẍ1 + . . .) +
[
(α0 + βα1 + . . .) + β cos(t)

]
(x0 + βx1 + . . .) = 0,

which then gives the following set of ODEs, in order of O(1),O(β),O(β2) respectively

ẍ0 + α0x0 = 0 (2.3.7a)
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ẍ1 + α0x1 = −[α1 + cos(t)]x0 (2.3.7b)

ẍ2 + α0x2 = −α2x0 − [α1 + cos(t)]x1. (2.3.7c)

From previous subsection, we know that solutions have minimal period of 2π if

α0 = n2, n = 0, 1, 2, . . . ,

where different α0 leads to different transition curves. Similarly, solutions have minimal period
of 4π if

α0 =
1

4
(2m− 1)2 =

(
m− 1

2

)2

, m = 1, 2, . . . ,

or equivalently

α0 =

(
n+

1

2

)2

, n = 0, 1, 2, . . . .

We include both cases by looking for solutions with α0 =
n2

4
, n = 0, 1, 2, · · · .

The case n = 0, i.e. α0 = 0

• (2.3.7a) becomes ẍ0 = 0, which has solution x1(t) = At + B. This has periodic solution
provided A = 0, so periodic solution of (2.3.7a) is given by

x0(t) = C0. (2.3.8)

• (2.3.7b) becomes ẍ1 = −[α1 + cos(t)]C0. This has periodic solutions provided α1 = 0, so
periodic solution of (2.3.7b) has the form

x1(t) = C0 cos(t) + C1. (2.3.9)

• Substituting (2.3.8) and (2.3.9) into (2.3.7c) yields

ẍ2 = −α2x0 − [α1 + cos(t)]x1

= −C0α2 − cos(t)(C0 cos(t) + C1)

= −C0α2 − C0 cos2(t)− C1 cos(t)

= −C0α2 −
C0

2
[1 + cos(2t)]− C1 cos(t).

This has periodic solutions provided C0α2 +
C0

2
= 0 ⇐⇒ α2 = −1

2
, so periodic solution

of (2.3.7c) has the form

x2(t) =
C0

8
cos(2t) + C1 cos(t). (2.3.10)

Hence, for small |β|, the transition curve takes the form α(β) = −1

2
β2 + O(β2), which is

approximately quadractic. The corresponding 2π periodic solution has the form

x(t) = C0 + β
[
C0 cos(t) + C1

]
+ β2

[
C0

8
cos(2t) + C1 cos(t)

]
+O(β3).
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The case n = 1, i.e. α0 = 1/4

• (2.3.7a) becomes ẍ0 = −1

4
x0 = 0, which has solution

x0(t) = C0 cos

(
t

2

)
+D0 sin

(
t

2

)
. (2.3.11)

• Substituting (2.3.11) into (2.3.7b) yields

ẍ1 +
1

4
x1 = −

[
α1 + cos(t)

] [
C0 cos

(
t

2

)
+D0 sin

(
t

2

)]
= −C0α1 cos

(
t

2

)
−D0α1 sin

(
t

2

)
− C0 cos(t) cos

(
t

2

)
−D0 cos(t) sin

(
t

2

)
= −C0α1 cos

(
t

2

)
−D0α1 sin

(
t

2

)
− C0

2

[
2 cos(t) cos

(
t

2

)]
− D0

2

[
2 cos(t) sin

(
t

2

)]
= −C0α1 cos

(
t

2

)
−D0α1 sin

(
t

2

)
− C0

2

[
cos

(
t+

t

2

)
+ sin(t) sin

(
t

2

)
+ cos

(
t− t

2

)
− sin(t) sin

(
t

2

)]
− D0

2

[
sin

(
t+

t

2

)
− sin(t) cos

(
t

2

)
− sin

(
t− t

2

)
+ sin(t) cos

(
t

2

)]
= −C0

[
α1 +

1

2

]
cos

(
t

2

)
−D0

[
α1 −

1

2

]
sin

(
t

2

)
− 1

2
C0 cos

(
3t

2

)
− 1

2
D0 sin

(
3t

2

)
.

In order to have a 4π-periodic solution, we must eliminate the secular/resonant terms.
There are two possible cases:

1. C0 = 0, α1 = 1/2, which gives the 4π-periodic (particular) solution

x1(t) =
1

4
D0 sin

(
3

2
t

)
.

2. D0 = 0, α1 = −1/2, which gives the 4π-periodic (particular) solution

x2(t) =
1

4
C0 cos

(
3

2
t

)
.

Hence, for small |β|, the transition curve takes the form α(β) =
1

4
± 1

2
β + O(β2), which is

approximately linear.
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2.4 Stability of Periodic Solutions

Stability of a fixed point is a local problem, since its stability can be determined by analysing
the behaviour of an arbitrary neighbourhood around the fixed point. On the contrary, stabil-
ity of a periodic orbit is loosely speaking a global problem, since one needs to analyse the
behaviour of the corresponding vector field in a neighbourhood of the entire periodic orbit.
Consequently, such problem becomes extremely difficult, and new mathematical tools need to
be developed. Periodic solutions are generally not stable in the sense of Lyapunov. That is,
orbits starting out in a neighbourhood of the periodic orbit will tend to have slightly different
frequencies, and so they develop a phase shift as time evolves. This motivates the notion of a
Poincaré section.

Consider an autonomous system of the form ẋ = f(x), x ∈ Rn, with periodic solution Γ(t).
Choose any point a on Γ(t) and construct an (n − 1)-dimensional submanifold V ⊂ Rn such
that V is a transversal section of f through a, i.e. for any x0 ∈ V , (x0, f(x0)) /∈ Tx0(V ), the
tangent space of V at x0. Consider an orbit γ(x0) starting at x0 ∈ V , we follow the orbit
until it returns to V for the first time. By continuity of f , we can always choose x0 sufficiently
close to a for this to hold; all such points constitute a Poincaré section. More precisely, an
open subset Σ ⊂ V containing a is called a Poincaré section if each point of Σ returns to V .
Viewing the flow as a map, we can define the Poincaré return map

P : Σ −→ V : x0 7→ φT (x0)(x0),

where T (x0) > 0 is the first time where the orbit γ(x0) returns to V . Observe that a is a
fixed point of P by construction. We now apply the idea of Lyapunov stability on the Poincaré
section.

Definition 2.4.1. Given an autonomous system, with periodic solution φ(t), a transversal V
and a Poincare return map P , whose fixed point is a.

(a) We say that φ(t) is stable if for all ε > 0, there exists δ = δ(ε) > 0 such that

|x0 − a| ≤ δ, x0 ∈ Σ =⇒ |P n(x0)− a| ≤ ε.

(b) We say that φ(t) is asymptotically stable if it is stable, and there exists δ1 > 0 such
that

|x0 − a| ≤ δ1, x0 ∈ Σ =⇒ lim
n→∞

P n(x0) = a.

Stability of a periodic orbit is closely related to the stability of fixed points of its correspond-
ing Poincaré map. Indeed, choose an arbitrary a ∈ Σ ∩ Γ(t) and let δx0 = x0 − a, δP (x0) =
P (x0)− a. Linearising the Poincaré map P about the point a yields the linearised system

δP (x0) = DP (a)δx0.

One can show that if eigenvalues of the Jacobian DP (a) ∈ R(n−1)×(n−1) lies inside the unit circle
in C, then the periodic solution Γ(t) is asymptotically stable. Moreover, these eigenvalues are
independent of the choice of a ∈ Γ(t) and its transversal section V . While Poincaré map is
a powerful concept in the study of periodic orbits, it is difficult to construct a Poincaré map
analytically in general.
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Non-Autonomous Case

Consider the non-autonomous system

ẋ = f(x, t), x ∈ Rn, t ∈ R,

where f(x, ·) is T -periodic. One can apply the previous definition of stability by rewriting this
system as the (n+ 1)-dimensional autonomous system given by{

ẋ = f(x, θ)

θ̇ = 1, θ(0) = 0,

where θ is the phase variable and (x, θ) ∈ Rn × S1 with S1 ' R/[0, T ], due to T -periodicity of
f(x, ·). The transversal V is now n-dimensional and a natural choice is to consider the mapping
P : Rn −→ Rn, obtained by strobing the solution at times 0, T, 2T, . . ..

Example 2.4.2. Consider a linear dissipative oscillator with natural frequency ω0

ẍ+ 2µẋ+ ω2
0x = h cos(ωt), 0 < µ < ω0, h, ω > 0.

This is an inhomogeneous second-order constant coefficient ODEs, which can be solve explicitly.
The general solution is given by

x(t) = C1e
−µt cos

(
t
√
ω2

0 − µ2

)
+ C2e

−µt sin

(
t
√
ω2

0 − µ2

)
+ α cos(ωt) + β sin(ωt), (2.4.1)

where

α =
(ω2

0 − ω2)h

4µ2ω2 + (ω2
0 − ω2)

, β =
2µωh

4µ2ω2 + (ω2
0 − ω2)

.

Observe that the solution has its amplitude at ω = ω0. If µ = 0, i.e. no dissipation, then α
blows up as ω approaches the natural frequency ω0 and we have resonance.

The constant C1, C2 are determined by the initial condition x(0), ẋ(0). Solving for C1, C2

yields

C1 = x(0)− α, C2 =
ẋ(0) + µx(0)− µα− ωβ

(ω2
0 − µ2)1/2

.

Note that (2.4.1) is a periodic solution with period 2π/ω if C1 = C2 = 0, i.e. x(0) = α, ẋ(0) =
ωβ. This suggests that we choose a Poincaré section containing the point (α, ωβ). Rewriting
the equation as follows 

ẋ = y

ẏ = −ω2
0x− 2µy + h cos(ωθ)

θ̇ = 1, θ(0) = 0.

We construct Poincaré return map P by strobing at times t = 0, 2π/ω, 4π/ω, . . .. The point

(α, ωβ) is the fixed point of P . Substitution of t =
2π

ω
with γ =

(
2π

ω

)√
(ω2

0 − µ2) yields

P

x(0)

ẋ(0)

 = P

 C1 + α

C2(ω2
0 − µ2)1/2 + ωβ − µC1

 =

x(t)

ẋ(t)

 ∣∣∣∣∣
t=2π/ω

.
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Moreover, it can be shown that lim
n→∞

P n

x(0)

ẋ(0)

 =

 α
ωβ

.

2.5 Stable Manifold Theorem

As opposed to nonlinear system, we have a far more satisfactory understanding towards the
behaviour of fixed points of a linear system. A common approach in understanding the lo-
cal behaviour of nonlinear systems near their fixed points is to study the linearised dynamics
about fixed points. Indeed, we have a far more satisfactory theoretical understanding on linear
systems. However, a major issue needs to be addressed: does linearisation technique provide
a reasonable prediction about the local behaviour of the original nonlinear system around a
fixed point? On a different perspective, which features of the linearised dynamic survive the
addition of nonlinear effect? This motivates the definition of hyperbolic fixed point.

Definition 2.5.1. A fixed point x0 of an ODE ẋ = f(x), x ∈ Rn is said to be hyperbolic if
the Jacobian evaluated at x0, Df(x0) has all eigenvalues with non-zero real part.

• Hyperbolic fixed points are structurally robust/stable, i.e. small changes do not alter the
nature of the problem (up to topological equivalence).

Definition 2.5.2. Let x0 be a hyperbolic fixed point of an ODE ẋ = f(x), x ∈ Rn.

(a) The forward contracting/stable subspace for x0 of the linearised system, denoted
by Es is the subset spanned by eigenvectors or generalised eigenvectors of Df(x0) with
eigenvalues having negative real part.

Es =
⊕

Re(λj)<0

N (Df(x0)− λj)nj .

Thus, Es is the set of vectors whose forward orbits go to the origin under the linearised
dynamics.

(b) The backward contracting/unstable subspace for x0 of the linearised system, de-
noted by Eu is the subset spanned by eigenvectors or generalised eigenvectors of Df(x0)
with eigenvalues having positive real part.

Eu =
⊕

Re(λj)>0

N (Df(x0)− λj)nj .

Thus, Eu is the set of vectors whose backward orbits go to the origin under the linearised
dynamics.

Theorem 2.5.3 (Stable Manifold Theorem). Consider the first order ODE ẋ = f(x), x ∈ Rn

and let φt be the flow of the system. Near a hyperbolic fixed point x0,
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(a) there exists a stable differentiable manifold S tangent at x0 to the stable subspace Es of
the linearised system ẋ = Df(x0)x, having the same dimension as Es. Moreover, S is
forward/positively invariant under φt and for all x ∈ S,

lim
t→∞

φt(x) = x0.

(b) there exists an unstable differentiable manifold U tangent at x0 to the unstable subspace
Eu of the linearised system ẋ = Df(x0)x, having the same dimension as Eu. Moreover,
S is backward/negatively invariant under φt and for all x ∈ U ,

lim
t→−∞

φt(x) = x0.

Example 2.5.4. Consider the following 3× 3 system
ẋ1 = −x1

ẋ2 = −x2 + x2
1

ẋ3 = x3 + x2
1.

The only fixed point is the origin (0, 0, 0). Since Df((0, 0, 0)) = diag(−1,−1, 1), we see that Es

is the (x1, x2)-plane and Eu is the x3 axis. Writing x(0) = c = [c1, c2, c3]T , the general solution
is given by

x1(t) = c1e
−t

x2(t) = c2e
−t + c2

1(et − e−2t)

x3(t) = c3e
t +

c2
1

3
(et − e−2t).

Clearly, lim
t→∞

φt(c) = 0⇐⇒ c3 + c2
1/3 = 0. Thus,

S =

{
c ∈ R3 : c3 = −c

2
1

3

}
.

Similarly, lim
t→−∞

φt(c) = 0⇐⇒ c1 = c2 = 0. Thus,

U =
{
c ∈ R3 : c1 = c2 = 0

}
.

Proof. (Sketch) WLOG, we assume that the hyperbolic fixed point is at x = 0.

(A) Rewrite ODE as ẋ = f(x) = Ax + F (x), where A = Df(0) and F ∈ C1(U). Note that
F (0) = 0 and DF (0) = 0. Since x = 0 is a hyperbolic fixed point, there exists an n× n
transformation via an invertible matrix C such that

B = C−1AC =

P 0

0 Q

 ,
whose eigenvalues
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• λ1, . . . , λk of (k × k) matrix P have negative real part.

• λk+1, . . . , λn of (n− k)× (n− k) matrix Q have positive real part.

(B) Performing a change of variable y := C−1x gives

ẏ = C−1ẋ = C−1
[
Ax+ F (x)

]
= C−1ACy + C−1F (Cy) = By +G(y),

where G(y) := C−1F (Cy). Define the following matrices

U(t) =

ePt 0

0 0

 , V (t) =

0 0

0 eQt

 .
The derivatives of U(t) and V (t) are

U̇ = BU with ‖U(t)‖ −→ 0 as t −→∞.
V̇ = BV with ‖V (t)‖ −→ 0 as t −→ −∞.

(C) Let a be a parameter and consider the following integral equation

u(t, a) = U(t)a+

∫ t

0

U(t− s)G(u(s, a)) ds−
∫ ∞
t

V (t− s)G(u(s, a)) ds. (2.5.1)

Differentiating (2.5.1) with respect to t using Leibniz’s rule shows that u̇ satisfies the
following ODE

u̇ = U̇a +

∫ t

0

U̇(t− s)G(u(s, a)) ds + U(0)G(u(t, a))

−
∫ ∞
t

V̇ (t− s)G(u(s, a)) ds + V (0)G(u(t, a))

= BUa+B

∫ t

0

U(t− s)G(u(s, a)) ds + U(0)G(u(t, a))

−B
∫ ∞
t

V (t− s)G(u(s, a)) ds+ V (0)G(u(t, a))

= Bu +G(u).

since U(0) + V (0) = I. Choose a such that aj = 0, j = k + 1, . . . , n. Then,

uj(0, a) =


aj for j = 1, . . . , k,

−
∫ ∞

0

V (−s)G(u(s, a1, . . . , ak, 0, . . . , 0)) ds for j = k + 1, . . . , n.

Setting yj = uj(0, a), we thus have the condition yj = ψj(y1, . . . , yk) for j = k + 1, . . . , n.
This defines a stable manifold S̃, i.e.

S̃ =
{

(y1, . . . , yn) : yj = ψj(y1, . . . , yk), j = k + 1, . . . , n
}
.
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(D) It can be proven that this defines a stable manifold S̃, such that if Y (0) ∈ S̃, then
Y (t) −→ 0 as t −→ ∞. The stable manifold S is obtained in the original x-space, under
the linear transformation x = Cy. To find the unstable manifold U , take t 7→ −t; we
obtain ẏ = −By −G(y) and write

y = (yk+1, . . . , yn, y1, . . . , yk).

�

Remark 2.5.5. The integral equation (2.5.1) is chosen in such a way that it converges to
the hyperbolic fixed point x = 0 as t −→ ∞. One can show that the general solution to the
equation ẏ = By +G(y) has the form

y(t) = etBy0 +

∫ t

0

e(t−s)BG(u(s)) ds

With the form of B we have, the general solution has the form

y(t, a) =

ePt 0

0 eQt

 a+

∫ t

0

eP (t−s) 0

0 eQ(t−s)

G(u(s, a)) ds. (2.5.2)

(2.5.1) is then obtained from (2.5.2) by removing terms that are divergent as t −→∞. In prac-
tice, one can construct an approximation of the stable manifold using the method of successive
approximation, given by the integral equation (2.5.1).

Example 2.5.6. Consider the system

{
ẋ1 = −x1 − x2

2

ẋ2 = x2 + x2
1.

. The iterative scheme for approxi-

mating S̃ is given by
u0(t, a) = 0

u(j+1)(t, a) = U(t)a+

∫ t

0

U(t− s)G(uj(s, a)) ds−
∫ ∞
t

V (t− s)G(uj(s, a)) ds

• We see that A = B =

−1 0

0 1

, F (x) = G(x) =

−x2
2

x2
1

. This implies that:

U(t) =

e−t 0

0 0

 , V (t) =

0 0

0 et

 , a =

a1

0

 .
• Substituting into the iterative scheme yields

u(1)(t, a) = U(t)a =

e−ta1

0
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u(2)(t, a) =

e−ta1

0

+

∫ t

0

e−(t−s) 0

0 0

 0

(e−sa1)2

 ds−
∫ ∞
t

0 0

0 et−s

 0

(e−sa1)2

 ds

=

e−ta1

0

− ∫ ∞
t

 0

et−se−2sa2
1

 ds
=

 e−ta1

−e
−2t

3
a2

1


u(3)(t, a) =

e−ta1

0

+

∫ t

0

e−(t−s) 0

0 0

−e−4sa4
1/9

e−2sa2
1

 ds−
∫ ∞
t

0 0

0 et−s

−e−4sa4
1/9

e−2sa2
1

 ds

=

e−ta1

0

− 1

9

∫ t

0

e−(t−s)e−4sa4
1

0

 ds−
∫ ∞
t

 0

et−se−2sa2
1

 ds

=

e
−ta1 +

1

27

[
e−4t − e−t

]
a4

1

−1

3
e−2ta2

1



• Letting t −→ 0, we see that u(3)(t, a) =

 a1

−1

3
a2

1

 =⇒ x2 = ψ2(a1) = −1

3
a2

1. Thus, the

stable manifold for small a1 is given by x2 = −x
2
1

3
. Note that the linear stable manifold

is

a1

0

.

In the proof, the stable and unstable manifolds S and U are only defined in a small neigh-
bourhood of the origin and are referred to as local manifolds. One can define global mani-
folds as follows.

Definition 2.5.7. Let φt be the flow of ẋ = f(x), x ∈ Rn. The global stable/unstable
manifolds are

W s(0) =
⋃
t≤0

φt(S)

W u(0) =
⋃
t≥0

φt(U)

2.6 Centre Manifolds

Bifurcation theory concerns the change in qualitative behaviour of a dynamical system as one
or more parameters are changed. For a hyperbolic fixed point, the local behaviour of the
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flow is completely determined by the linearised flow up to homeomorphism [Stable Manifold
Theorem/ Hartman-Grobman Theorem]. It follows that small perturbation of the equa-
tion will also have a fixed point of the same stability type, called structural stability. This
suggests that bifurcations of fixed points can only occur at parameter values for which a fixed
point is non-hyperbolic, and provides a criteria for detecting bifurcation:

Find parameter values for which the linearised flow near a fixed point
has a zero or purely imaginary eigenvalues.

Definition 2.6.1. Let x0 be a fixed point of an ODE ẋ = f(x), x ∈ Rn. The centre subspace for
x0 of the linearised system, denoted by Ec is the subset spanned by eigenvectors or generalised
eigenvectors of Df(x0) with eigenvalues having zero real part.

Ec =
⊕

Re(λj)=0

N (Df(x0)− λj)nj .

Theorem 2.6.2 (Centre Manifold Theorem). There exists a nonlinear mapping

h : Ec −→ Es ⊕ Eu,

with h(0) = 0, Dh(0) = 0, and a neighbourhood U of x = 0 in Rn such that the center manifold

M =
{

(x, h(x)) : x ∈ Ec
}

has the following properties:

(a) Invariance : the center manifold M is locally invariant with respect to the given ODEs,
i.e. if x(0) = M

⋂
U , then x(t) ∈ M as long as x(t) ∈ U . That is, x(t) can only leave M

when it leaves the neighbourhood U .

(b) Attracting : if Eu = {0}, then M is locally attracting, i.e. all solutions staying in U
converges exponentially to a solution on M .

(c) M has the same dimension as Ec, contains x = 0 and is tangential to Ec at the origin.

Construction of Center Manifold

Suppose that Eu = {0} and the given ODE can be written in the form{
ẋ = Ax+ f1(x, y)

ẏ = −By + f2(x, y),

where eigenvalues of A have zero real part, eigenvalues of B have strictly positive real part and
for j = 1, 2, fj(0, 0) = 0, Dfj(0, 0) = 0. The Centre Manifold Theorem implies that the flow
on the nonlinear centre manifold M can be written as:

ẋ = Ax+ f1(x, h(x)) ≡ G(x).
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To determine h(·), first note that we have y = h(x) on M . Differentiating this with respect
to t gives

ẏ = Dh(x)ẋ = Dh(x)
[
Ax+ f1(x, h(x))

]
. (2.6.1)

On the other hand, we have that

ẏ = −Bh(x) + f2(x, h(x)). (2.6.2)

Comparing (2.6.1) and (2.6.2) yields

Dh(x)
[
Ax+ f1(x, h(x))

]
= −Bh(x) + f2(x, h(x)) (2.6.3)

together with the condition h(0) = 0, Dh(0) = 0; these two conditions tells us that h(·) is at
least quadratic. We can solve for h(x) by Taylor expansions in power of components of x.

Example 2.6.3. Consider the nonlinear 2× 2 system{
ẋ = xy

ẏ = −y − x2.

It should be clear that x ∈ Ec and y ∈ Es. We try a solution of the form:

y = h(x) = ax2 + bx3 + cx4 + dx5 +O(x6).

From previous discussions, we get the following two equations:

ẏ = h′(x)ẋ = h′(x)[xh(x)]

= x
[
ax2 + bx3 + . . .

][
2ax+ 3bx2 + . . .

]
= 2ax4 + 5abx5 +O(x6).

ẏ = −y − x2 = −h(x)− x2

= −(a+ 1)x2 − bx3 − cx4 − dx5 +O(x6).

Comparing coefficients of powers of x, we obtain a = −1, b = 0, c = 2, d = 0. Thus

y = h(x) = −x2 − 2x4 +O(x6).

The dynamics on the center manifold is approximated by:

ẋ = xh(x) = −x
[
x2 + 2x4 +O(x6)

]
.

Since the big bracket term is positive definite, it appears from phase plane analysis that we are
going to converge to the fixed point.
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2.7 Problems

1. Let x : [0,∞) −→ Rn such that |x(t)| ≤ Meαt for some constant M ≥ 0 and α ∈ R.
Introduce the Laplace transform

x̃(s) =

∫ ∞
0

e−stx(t) dt.

(a) Laplace transform the first order ODE in Rn

ẋ = Ax+ f(t), x(0) = x0,

to obtain the following solution in Laplace space

x̃(s) = (sI − A)−1[x0 + f̃(s)].

Solution:

(b) In the scalar case (n = 1), invert the Laplace transform to obtain the solution

x(t) = e−At +

∫ t

0

e−(t−t′)f(t′) dt′.

Solution:

(c) Use Laplace transforms to solve the second order ODE (for a RLC electronic circuit)

LÏ(t) +Rİ(t) +
1

C
I(t) = V0 cos(ωt),

where ω 6= ω0 := 1/
√
LC. This is a model of a RLC circuit in electronics where R is

resistance, C is the capacitance and L is the inductance.

Solution:

2. Consider a linear chain of 2N atoms consisting of two different masses m,M , M > m, placed
alternately. The atoms are equally spaced with lattice spacing a with nearest-neighbour
interactions represented by Hookean springs with spring constant β. Label the light atoms by
even integers 2n, n = 0, . . . , N−1 and the heavy atoms by odd integers 2n−1, n = 1, . . . , N .
Denoting their displacements from equilibrium by the variables U2n and V2n−1 respectively,
Newton’s law of motion gives{

mÜ2n = β[V2n−1 + V2n+1 − 2U2n]

MV̈2n−1 = β[U2n + U2n−2 − 2V2n−1].

Assume periodic boundary conditions U0 = U2N and V1 = V2N+1.

(a) Sketch the configuration of atoms and briefly explain how the dynamical equations
arise f rom Newton’s law of motion.
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Solution:

(b) Assuming a solution of the form

U2n = Φe2inkae−iωt, V2n+1 = Ψei(2n+1)kae−iωt,

derive an eigenvalue equation for the amplitudes (Φ,Ψ) and determine the eigenval-
ues.

Solution:

(c) Using part (b), show that there are two branches of solution and determine the speed
ω/k on the two branches for small k.

Solution:

3. Construct a fundamental matrix for the system
ẋ1 = x2

ẋ2 = x3

ẋ3 = −2x1 + x2 + 2x3,

and deduce the solution of 
ẋ1 = x2 + et

ẋ2 = x3

ẋ3 = −2x1 + x2 + 2x3,

with initial condition x1(0) = 1, x2(0) = x3(0) = 0.

Solution:

4. Determine the stability of the solutions of

(a) ẋ1 = x2 sin(t), ẋ2 = 0.

Solution:

(b)

ẋ1

ẋ2

 =

−2 1

1 −2

x1

x2

+

 1

−2

 et.
Solution:

(c) ẍ+ e−tẋ+ x = et.
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Solution:

5. (a) Consider the equation ẋ = f(t)A0x, x ∈ R2, with f(t) a scalar T -periodic solution
and A0 a constant matrix with real distinct eigenvalues. Determine the corresponding
Floquet multipliers.

Solution:

(b) Consider the Hill equation

ẍ+ q(t)x = 0, q(t+ T ) = q(t).

Rewrite as a first order system. Use Liouville’s formula to show that the characteristic
multipliers have the form

µ± = ∆±
√

∆2 − 1,

where ∆ = tr(Ψ(T ))/2 and Ψ(t) is the fundamental matrix with Ψ(0) = I. Hence,
show that all solutions are bounded if |∆| < 1.

Solution:

6. (a) Use a perturbation expansion in β to show that the transition curves for Mathieu’s
equation

ẍ+ (α + β cos(t))x = 0,

for α ≈ 1, β ≈ 0, are given approximately by

α = 1− β2

12
, α = 1 +

5

12
β2.

Solution:

(b) Now suppose that α ≈ 1/4+α1β, β ≈ 0. In the unstable region near α = 1/4, solutions
of Mathieu’s equation are of the form

c1e
σtq1(t) + c2e

−σtq2(t),

where σ is real and positive, and q1, q2 are 4π-periodic. Derive the second order equation
for q1, q2 and perform a power series expansion in β to show that σ ≈ ±β

√
1/4− α2

1.

Solution:

(c) Use part (b) to deduce that solutions of the damped Mathieu equation

ẍ+ κẋ+ (α + β cos(t))x = 0,

where κ = κ1β +O(β2), are stable if to first order in β,

α <
1

4
− β

2

√
1− κ2

1 or α >
1

4
+
β

2

√
1− κ2

1.
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Perturbation Theory

3.1 Basics of Perturbation Theory

3.1.1 Asymptotic Expansion

Suppose we want to evaluate the following integral:

f(ε) =

∫ ∞
0

e−t

1 + εt
dt , ε > 0.

We can develop an approximation of f(ε) for small ε by repeating integration by parts. More
precisely,

f(ε) = 1− ε
∫ ∞

0

e−t

(1 + εt)2
dt

= 1− ε+ 2ε2

∫ ∞
0

e−t

(1 + εt)3
dt

=
...

...
...

= 1− ε+ 2ε2 − 3!ε3 + · · · · · ·+ (−1)NN !εN +RN(ε).

where RN(ε) is the remainder term:

RN(ε) = (−1)N+1(N + 1)!εN+1

∫ ∞
0

e−t

(1 + εt)N+2
dt.

• Since

∫ ∞
0

1

(1 + εt)N+2
e−tdt ≤

∫ ∞
0

e−tdt = 1, we see that:

RN(ε) ≤ (N + 1)!εN+1 <<< |(−1)NN !εN |

Thus, for fixed N ,

lim
ε→0

∣∣∣∣∣f(ε)−
∑N

k=0 akε
k

εN

∣∣∣∣∣ = 0

or

f(ε) =
N∑
k=0

akε
k +O(εN+1).
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• The formal series
N∑
k=0

akε
k is said to be an asymptotic expansion of f(ε) such that for

fixed N , it provides a good approximation of f(ε) as ε −→ 0.

• However, the expansion is not convergent for fixed ε since (−1)NN !εN −→ ∞ as N −→
∞.

Definition 3.1.1 (Big O and Little O notation).

(a) f(ε) = O(g(ε)) as ε −→ 0 means that there exists M > 0 such that |f | ≤M |g| as ε −→ 0.

(b) f(ε) = o(g(ε)) as ε −→ 0 means that lim
ε→0

∣∣∣∣f(ε)

g(ε)

∣∣∣∣ = 0.

Definition 3.1.2.

(a) The ordered sequence of functions {δj(ε)}∞j=0 is called an asymptotic sequence as ε −→ 0
if δj+1(ε) = o(δj(ε)) as ε −→ 0.

• One example is the sequence 1, ε, ε2, · · · for small ε.

(b) Let f(ε) be a continuous function of ε, and {δj(ε)}∞j=0 be an asymptotic sequence. The

formal series
N∑
j=0

ajδj(ε) is called an asymptotic expansion of f(ε), valid to order δN(ε),

if for all N ≥ 0,

lim
ε→0

∣∣∣∣∣f(ε)−
∑N

j=0 ajδj(ε)

δN(ε)

∣∣∣∣∣ = 0.

• Usually write f(ε) ∼
N∑
j=0

ajδj(ε), ε −→ 0.

In the case of perturbation solution to an ODE, we will consider asymptotic expansions of

the form x(t, ε) ∼
∑
k

ak(t)δk(ε), which are valid over some interval of time. It is often useful

to characterise the time interval, i.e. we say that the estimate is valid on a time scale 1/δ̂(ε) if
the following holds:

lim
ε→0

∣∣∣∣∣x(t, ε)−
∑N

k=0 ak(t)δk(ε)

δN(ε)

∣∣∣∣∣ = 0.

for 0 ≤ δ̂(ε) ≤ C, with C independent of ε.

Example 3.1.3. Suppose x(t, ε) = εt sin(t), x ∈ R, t ≥ 0, then

x(t, ε) = O(ε) for t = O(1).

x(t, ε) = O(1) for t ∼ 1

ε
.
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3.1.2 Naive Expansions

Consider ẋ = f(t, x; ε), x ∈ Rn, x(0) = x0. Suppose that we can expand f as a Taylor series
in ε, i.e.

f(t, x; ε) = f0(t, x) + εf1(t, x) + · · · .
One might expect a similar expansion exists for the solution:

x(t) = x0(t) + εx1(t) + ε2x2(t) + · · · .
[
δk(ε) = εk.

]
Substitute this expansion into ODE and equate terms in equal powers of ε, this gives us an
asymptotic approximation for t = O(1).

Example 3.1.4. Consider ẍ+ 2εẋ+ x = 0, x(0) = a, ẋ(0) = 0.

• This has explicit solution of the form:

x(t) = ae−εt cos
(
t
√

(1− ε2)
)

+
εa√

(1− ε2)
e−εt sin

(
t
√

(1− ε2)
)
.

There is 2 time scales here:

– The slowly decaying exponential which varies on time scale of
1

ε
.

– The oscillatory term which varies on time scale of 1.

• If we apply naive perturbation, we will pick up secular terms. More precisely,

e−εt cos
(
t
√

(1− ε2)
)
≈
(

1− εt+
ε2t2

2!

)
cos(t).

• Alternatively, assume that an expansion exists for the solution and set

x(t) = x0(t) + εx1(t) + · · · .

Equating terms in equal powers of ε yields:

ẍ0 + x0 = 0

...
...

...

ẍn + xn = −2ẋn−1 , n = 1, 2, · · · .

Solving these equations with initial conditions x0(0) = a, ẋ0(0) = 0; xn(0) = 0, ẋn(0) = 0
gives:

x0(t) = a cos(t)

x1(t) = a sin(t)− at cos(t).

– We see that x1(t) contains a secular term that grows linearly in t, making the
asymptotic expansion valid for only small values of t.

– Another way to interpret this is that the solution breaks down when t ∼ 1

ε
, since

εx1(t) will be of the same order as x0(t).
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3.2 Method of Multiple Scales

One often finds that solution oscillates on a time-scale of order t with an amplitude or phase
that drifts on a slower time-scale εt. This suggest we should look for solutions of the form

R(εt) sin(t+O(εt)).

or equivalently
A(εt) sin(t) +B(εt) cos(t).

• In order to separate these time scales, we treat t and τ = εt as independent variables,
and introduce the following asymptotic expansion:

X(t) = x(t, τ, ε) ∼ x0(t, τ) + εx1(t, τ) + · · .

which is asymptotic up to order 1/ε. In general, it might be
√
ε instead of ε

• τ = εt is called the slow time scale because it does not affect the asymptotic expansion
until t is comparable with 1/ε.

• Using the chain rule, we have that
d

dt
=

∂

∂t
+ ε

∂

∂τ
. Thus,

ẋ =
∂x0

∂t
+ ε

∂x0

∂τ
+ ε

[
∂x1

∂t
+ ε

∂x1

∂τ

]
+ . . .

=
∂x0

∂t
+ ε

[
∂x0

∂τ
+
∂x1

∂t

]
+ . . .

ẍ =

[
∂2x0

∂t2
+ ε

∂2x0

∂τ∂t

]
+ ε

[
∂2x0

∂t∂τ
+ ε

∂2x0

∂τ 2

]
+ ε

[
∂2x1

∂t2
+ ε

∂2x1

∂τ∂t

]
+ . . .

=
∂2x0

∂t2
+ ε

[
2
∂2x0

∂t∂τ
+
∂2x1

∂t2

]
+ . . .

Example 3.2.1. Consider the following initial value problem:{
ẍ+ εẋ(x2 − 1) + x = 0.

x(0) = 1, ẋ(0) = 0.

Suppose that X(t) has the asymptotic expansion of the form:

X(t) = x(t, ε, τ) ∼ x0(t, τ) + εx1(t, τ)

for t = O(1/ε). Substituting this expansion into the ODE and equate terms in equal powers
of ε gives the following:

• Equation for O(1) term is: 
∂2x0

∂t2
+ x0 = 0.

x0(0, 0) = 1,
∂x0

∂t
(0, 0) = 0.

This has solution x0(t, τ) = R(τ) cos
(
t+ θ(τ)

)
, with R(0) = 1, θ(0) = 0. Note that the

constant might depends on τ . Also, when t = 0, so is τ .
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• Equation for O(ε) term is:
∂2x1

∂t2
+ x1 = −2

∂2x0

∂t∂τ
− ∂x0

∂t
(x2

0 − 1).

x1(0, 0) = 0,

(
∂x0

∂τ
+
∂x1

∂t

) ∣∣∣∣
(0,0)

= 0.

– Substituting for x0 into the RHS yields:

−2
∂2x0

∂t∂τ
− ∂x0

∂t
(x2

0 − 1) = −2
∂

∂τ

[
R sin(t+ θ)

]
+R sin(t+ θ)

[
R2 cos2(t+ θ)− 1

]
= 2
[
Rθτ cos(t+ θ) +Rτ sin(t+ θ)

]
+R sin(t+ θ)

[
R2 cos2(t+ θ)− 1

]
= 2
[
Rθτ cos(t+ θ) +Rτ sin(t+ θ)

]
+R sin(t+ θ)

[
R2
(

1− sin2(t+ θ)
)
− 1
]

=
[
2Rτ +R(R2 − 1)

]
sin(t+ θ) + 2Rθτ cos(t+ θ)

−R3 sin3(t+ θ).

– The first two terms are secular/resonant terms, which we need to eliminate. From
this, we obtain two initial value problems for R(τ) and θ(τ):{

2Rτ = R(1−R2), R(0) = 1

θτ = 0, θ(0) = 0.

The second equation immediately implies that θ(τ) = 0 for all τ ≥ 0.

– In particular, we can solve for R(τ) explicitly by first using the substitution y = R2:

1 =
2

R(1−R2)

dR

dτ

=
2

R(1−R2)

(
1

2R

dy

dτ

)
=

1

y(1− y)

dy

dτ

=

[
1

y
+

1

1− y

]
dy

dτ

Integrating both sides with respect to τ yields:

ln |y| − ln |1− y| = τ + A

τ + A = ln

∣∣∣∣ y

1− y

∣∣∣∣
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3.3 Averaging Theorem: Periodic Case

3.4 Phase Oscillators and Isochrones
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3.5 Problems

1. Consider the equation
ẍ+ ẋ = −ε(x2 − x), 0 < ε� 1.

Using the method of multiple scales, show that

x0(t, τ) = A(τ) +B(τ)e−t,

and identify any resonant terms at O(ε). Show that the non-resonance condition is

Aτ = A− A2,

and describe the asymptotic behaviour of solutions.

Solution:

2. Consider the Van der Pol equation

ẍ+ x+ ε(x2 − 1)ẋ = Γ cos(ωt), 0 < ε� 1,

with Γ = O(1) and ω 6= 1

3
, 1, 3. Using the method of multiple scales, show that the solution

is attracted to

x(t) =
Γ

1− ω2
cos(ωt) +O(ε)

when Γ2 ≥ 2(1− ω2)2 and

x(t) = 2

(
1− Γ2

2(1− ω2)2

)1/2

cos(t) +
Γ

1− ω2
cos(ωt) +O(ε)

when Γ2 < 2(1− ω2)2. Explain why this result breaks down when ω =
1

3
, 1, 3.

Solution:

3. Consider the following differential equation

ẍ+ x = −εf(x, ẋ),

with |ε| � 1. Let y = ẋ.

(a) Show that if E(x, y) = (x2 + y2)/2, then Ė = −εf(x, y)y. Hence show that an approx-
imate periodic solution of the form x = A cos(t) +O(ε) exists if∫ 2π

0

f(A cos(t),−A sin(t)) sin(t) dt = 0.
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Solution:

(b) Let En = E(x(2πn), y(2πn)) and E0 = E(x(0), y(0)). Show that to lowest order En
satisfies a difference equation of the form

En+1 − En + εF (En)

and write down F (En) explicitly as an integral. Hence deduce that a periodic orbit
with approximate amplitude A∗ =

√
2E∗ exists if F (E∗) = 0 and this orbit is stable if

ε
dF

dE
(E∗) < 0.

Hint : Spiralling orbits close to the periodic orbit x = A∗ cos(t) +O(ε) can be approx-
imated by a solution of the form x = A cos(t) +O(ε).

Solution:

(c) Using the above result, find the approximate amplitude of the periodic orbit of the Van
der Pol equation

ẍ+ x+ ε(x2 − 1)ẋ = 0,

and verify that it is stable.

Solution:

4. Consider the forced Duffing equation

ẍ+ ω2x = ε[γ cos(ωt)− κẋ− βx− x3].

Using the method of averaging withx(t) = a(t) cos(ωt) +
b(t)

ω
sin(ωt)

ẋ(t) = −a(t)ω sin(ωt) + b(t) cos(ωt),

derive dynamical equations for the amplitudes a, b and show that they are identical to the
amplitude equations obtained using the method of multiple scales.

Solution:
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Boundary Value Problems

4.1 Compact Symmetric Linear Operators

Definition 4.1.1. Let V be a complex vector space. An inner product is a mapping 〈·, ·〉 : V×
V −→ C with the following properties

(a) 〈αf1 + βf2, g〉 = α∗〈f1, g〉+ β∗〈f2, g〉 for all α, β ∈ C.

(b) 〈f, g〉 = 〈g, f〉∗.

(c) 〈f, f〉 = 0⇐⇒ f = 0.

Associated with every inner product is an associated norm ‖f‖ =
√
〈f, f〉. If V is complete

with respect to the above norm, then V is a Hilbert space.

Theorem 4.1.2 (Cauchy-Schwarz). |〈f, g〉| ≤ ‖f‖‖g‖.

Proof. The inequality is trivial if g = 0, so assume that g 6= 0. Define h = f − 〈f, g〉
‖g‖

g. Since

〈h, g〉 = 0, Pythagorean theorem yields

‖f‖2 =

∥∥∥∥h+
〈f, g〉g
‖g‖

∥∥∥∥2

=

〈
h+
〈f, g〉g
‖g‖

, h+
〈f, g〉g
‖g‖

〉
= ‖h‖2 +

|〈f, g〉|2

‖g‖2

≥ |〈f, g〉|
2

‖g‖2
.

�

Lemma 4.1.3 (Bessel’s inequality). Suppose (uj) is an orthonormal sequence in a Hilbert space
H. The following inequality holds for any f ∈ H

∞∑
j=1

|〈uj, f〉|2 ≤ ‖f‖2.

71
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Proof. Suppose (uj) is an orthonormal sequence in H. Any f ∈ H can be written as

f = f⊥ +
n∑
j=1

〈uj, f〉uj.

Note that for any fixed k = 1, . . . , n,

〈uk, f⊥〉 =

〈
uk, f −

n∑
j=1

〈uj, f〉uj

〉
= 〈uk, f〉 − 〈uk, f〉 = 0.

=⇒ ‖f‖2 = ‖f⊥‖2 +
n∑

j,k=1

〈uj, f〉∗〈uk, f〉〈uj, uk〉

= ‖f⊥‖2 +
n∑
j=1

|〈uj, f〉|2

≥
n∑
j=1

|〈uj, f〉|2.

The result follows by taking limit as n −→∞.
�

Definition 4.1.4.

(a) A linear operator is a linear mapping A : D(A) −→ H, where H is a Hilbert space and
D(A) is a linear subspace of H, called the domain of A.

(b) A linear operator A is symmetric if

(i) its domain is dense, that is, D(A) = H, and

(ii) 〈g, Af〉 = 〈Ag, f〉 for all f, g ∈ D(A).

(c) A number λ ∈ C is called an eigenvalue of a linear operator A if there exists a non-zero
vector u ∈ D(A), called an eigenvector of λ such that Au = λu.

(d) An eigenspace is N (A− λI) =
{
u ∈ D(A) : (A− λI)u = 0

}
.

Theorem 4.1.5. Let A be a symmetric linear operator. Then all eigenvalues of A (if they
exists) are real and eigenvectors of distinct eigenvalues are orthogonal.

Proof. Suppose λ is an eigenvalue with unit normalised eigenvector u.

λ = 〈u,Au〉 = 〈Au, u〉 = λ∗

This implies that λ is real. If Auj = λjuj, j = 1, 2, then

(λ1 − λ2)〈u1, u2〉 = 〈Au1, u2〉 − 〈u1, Au2〉 = 0.

since A is symmetric. Thus, if λ1 − λ2 6= 0, we must have 〈u1, u2〉 = 0 =⇒ u1 ⊥ u2.
�
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Definition 4.1.6 (Boundedness and Compactness).

(a) A linear operator A with D(A) = H is said to be bounded if

‖A‖ = sup
f∈D(A),‖f‖=1

‖Af‖ <∞

– By construction, ‖Af‖ ≤ ‖A‖‖f‖, i.e. a bounded linear operator is continuous.

(b) A linear operator A with D(A) = H is said to be compact if for any bounded sequence
(fn) ⊂ D(A), the sequence (Afn) has a convergent subsequence in H.

– It can be shown that every compact linear operator is bounded.

Theorem 4.1.7. A compact symmetric operator A has an eigenvalue λ0 for which |λ0| = ‖A‖.

Proof. The result is trivial is A = 0, so suppose not. Denote a = ‖A‖, with a 6= 0. By
definition of ‖A‖, we have that

‖A‖2 = sup
‖f‖=1

‖Af‖2 = sup
‖f‖=1

〈Af,Af〉 = sup
‖f‖=1

〈f, A2f〉.

This implies that there exists a normalised sequence (un) such that lim
n→∞
〈un, A2un〉 = a2. Since

A is compact, A2 is also compact, so there exists a subsequence (unk) such that A2unk −→ y =
a2u in H as k −→∞ for some u ∈ H. Since A is symmetric,

‖(A2 − a2)unk‖2 = ‖A2unk‖2 − 〈A2unk , a
2unk〉 − 〈a2unk , A

2unk〉+ ‖a2unk‖2

= ‖A2unk‖2 − 2a2〈unk , A2unk〉+ a4‖unk‖2

≤ (a2)2‖unk‖2 − 2a2〈unk , A2unk〉+ a4‖unk‖2
[
A is bounded

]
= 2a4 − 2a2〈unk , A2unk〉

[
‖unk‖2 = 1

]
= 2a2

[
a2 − 〈unk , A2unk〉

]
−→ 0 as k −→∞

Hence, we have

‖a2unk − a2u‖ ≤ ‖a2unk − A2un‖+ ‖A2unk − a2u‖
−→ 0 as k −→∞.

which implies that unk −→ u in D(A) = H as k −→∞. It follows that

0 = lim
k→∞

(A2 − a2)unk = (A2 − a2)u = (A+ aI)(A− aI)u,

There are two possible cases

1. Either (A− aI)u = 0 =⇒ λ0 = a,

2. or (A− aI)u = v 6= 0 and (A+ aI)v = 0, which gives λ0 = −a.

�
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Remark 4.1.8. A bounded operator cannot have an eigenvalue |λ| > ‖A‖ since

|λ|‖u‖ = ‖λu‖ = ‖Au‖ ≤ ‖A‖‖u‖.

Theorem 4.1.9 (Spectral Theorem for Compact Symmetric Linear Operators).
Suppose H is a Hilbert space and A : H −→ H is a compact symmetric linear operator.

(a) There exists a sequence of real eigenvalues (λn)∞n=0 −→ 0. The corresponding normalised
eigenvectors {u0, u1, . . .} form an orthornormal set in H.

(b) Every f ∈ R(A) can be written as

f =
N∑
j=0

〈uj, f〉uj. (4.1.1)

(c) If R(A) is dense in H, then the set of normalised eigenvectors form an orthonormal basis
of H.

Proof. We first establish existence of an orthonormal set of eigenvectors (eigenfunctions) using
Theorem 4.1.7.

• Let H(0) = H and A0 = A|H(0) : H(0) −→ H(0). From Theorem 4.1.7, there exists an
eigenvalue λ0 and a normalised eigenvector u0 ∈ H(0) such that

Au0 = λ0u0, with |λ0| = ‖A0‖ = ‖A‖.

• Define H(1) := (span(u0))⊥ = {f ∈ H : 〈f, u0〉 = 0}. Note that H(1) ⊂ H(0).

– Since A is symmetric, for any f ∈ H(1) we have that

〈Af, u0〉 = 〈f, Au0〉 = λ0〈f, u0〉 = 0.

This means that Af ∈ H(1).

– Let A1 = A|H(1) : H(1) −→ H(1) be the restriction of A to H(1), this is again a
compact symmetric linear operator. From Theorem 4.1.7, there exists an eigenvalue
λ1 and a normalised eigenvector u1 ∈ H(1) such that

A1u1 = λ1u1, with |λ1| = ‖A1‖.

Moreover, we have that 〈u1, u0〉 = 0 since u1 ∈ H(1).

By iterating this argument, we construct a family of spaces H(n) and compact symmetric lin-
ear operators A(n), together with a sequence of eigenvalues (λj) with corresponding normalised
eigenvectors (uj), satisfying

1. . . . H(n) ⊂ H(n−1) ⊂ . . . ⊂ H(0) = H.

2. H(n) =
[
span(u0, · · · , un−1)

]⊥
for all n ≥ 1.
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3. An : H(n) −→ H(n), with Anun = λnun and |λn| = ‖An‖ for each n ≥ 0.

Moreover, the nested property of H(n) implies that 〈uk, uj〉 = 0 for all 0 ≤ k < j. This
iterative procedure does not terminate unless R(A) is finite-dimensional. Indeed, if R(A) is of
dimension n <∞, then

An = A|H(n) = 0 =⇒ λj = 0 for all j ≥ n.

Now, suppose λj 6−→ 0. There exists a subsequence λjk and ε > 0 such that |λjk | > ε for

all k ≥ 1. Consider the sequence (vk) defined by vk =
ujk
λjk

, which is well-defined since λjk 6= 0.

Observe that (vk) is a bounded sequence since (ujk) has unit norm and (λjk) is bounded below.
Moreover, for any k 6= l we have that

‖Avk − Avl‖2 =
∥∥∥Aujk
λjk
− Aujl

λjl

∥∥∥2

= ‖ujk − ujl‖2
[
since Aun = λnun

]
= ‖ujk‖2 + ‖ujl‖2

[
since 〈um, un〉 = δmn

]
= 2

[
since ‖un‖ = 1

]
Thus, any subsequence of (Avk) is not a Cauchy sequence and does not converge. This contra-
dicts the compactness of the linear operator A since (vk) is a bounded sequence.

Next, let f = Ag ∈ R(A), and denote fn =
n∑
j=0

〈uj, f〉uj. Observe that

fn =
n∑
j=0

〈uj, f〉uj =
n∑
j=0

〈uj, Ag〉uj

=
n∑
j=0

〈Auj, g〉uj
[
since A is symmetric

]
=

n∑
j=0

λ∗j〈uj, g〉uj

=
n∑
j=0

λj〈uj, g〉uj
[
from Theorem 4.1.5

]
=

n∑
j=0

〈uj, g〉Auj
[
since Auj = λjuj

]
= A

[
n∑
j=0

〈uj, g〉uj

] [
since A is linear

]
= Agn.

For any k = 0, . . . , n, we also have that

〈uk, g − gn〉 = 〈uk, g〉 −

〈
uk,

n∑
j=0

〈uj, g〉uj

〉
= 〈uk, g〉 − 〈uk, g〉 = 0,
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i.e. g − gn ∈
[
span(u0, · · · , un)

]⊥
= H(n+1). There are two possible cases:

1. dim(R(A)) = n+ 1 <∞.

This means that An+1 = 0. Since g − gn ∈ H(n+1), we have that

f − fn = Ag − Agn = A(g − gn) = An+1(g − gn) = 0.

2. dim(R(A)) =∞.

Since g − gn ∈ H(n+1), Pythagorean theorem yields

‖g‖2 = ‖g − gn + gn‖2 = ‖g − gn‖2 + ‖gn‖2 ≥ ‖g − gn‖2.

Boundedness of An+1 gives

‖f − fn‖2 = ‖An+1(g − gn)‖2 ≤ ‖An+1‖2‖g − gn‖2 ≤ |λn+1|2‖g‖2 −→ 0 as n −→∞.

In both cases, we prove that fn −→ f and so (4.1.1) holds.

Finally, let f ∈ H and supposeR(A) is dense in H. Given any ε > 0, there exists fε ∈ R(A)
such that ‖f − fε‖ < ε. Moreover, from previous step, there exists f̂ε ∈ span(u0, · · · , un) for
sufficiently large n such that ‖fε − f̂ε‖ < ε. Thus,

‖f − f̂ε‖ ≤ ‖f − fε‖+ ‖fε − f̂ε‖ < 2ε

for sufficiently large n.
�

Remark 4.1.10. We would like to carry out a similar analysis to derive a spectral theorem
for differential operator. The problem is that symmetric differential operator are not compact,
or even bounded. Fortunately, one can construct an inverse of a differential operator that is
compact (Green’s functions and integral equations).

4.2 Linear Differential Operators

Consider the formal linear differential operator on [a, b] ⊂ R defined by

L = p0(x)
dn

dxn
+ p1(x)

dn−1

dxn−1
+ . . .+ pn(x). (LDO)

where we are not concerned about the space of functions it is applied to. A natural choice
of function space is the Hilbert space L2[a, b], since we can work with inner product and
orthogonality.

• First, note that L cannot act on all functions in L2[a, b] because not all of them are
differentiable. Because of this, we require that our domain D(L) contains only functions
that are sufficiently differentiable, but the image of these functions under L need only be
in L2[a, b].

• Usually, we further restrict D(L) by imposing boundary conditions at the endpoints of
the interval. The boundary conditions that we will impose will always be linear and
homogeneous, this will make D(L) a vector space.
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4.2.1 Formal Adjoint

With the above linear differential operator L, consider a weight function ω(x) which is defined
to be a real and positive function on (a, b). We can construct another operator L† such that
the following holds for any smooth function u(x), v(x)

ω
[
u∗Lv − (L†u)∗v

]
=

d

dx

(
Q[u, v]

)
, (4.2.1)

for some function Q[·, ·] that depends bilinearly on its arguments and their first n− 1 deriva-
tives. (4.2.1) is called the Lagrange’s identity and L† is called the formal adjoint of L with
respect to the weight function ω. Note that we are yet to specify D(L†).

Now, consider a weighted inner product defined by

〈u, v〉ω =

∫ b

a

ωu∗v dx.

If u and v have boundary conditions such that Q[u, v]|ba = 0, then

〈u, Lv〉ω = 〈L†u, v〉ω

which looks similar to how we define an adjoint operator on a normed vector space! A common
method for finding the formal adjoint is using integration by parts.

Example 4.2.1 (Sturm-Liouville operator). Consider the following linear differential operator

L = p0(x)
d2

dx2
+ p1(x)

d

dx
+ p2(x),

where pj(x) are all real and ω(x) ≡ 1. Integrating by parts twice yields

〈u, Lv〉 =

∫ b

a

u∗(x)

[
p0(x)

d2v

dx2
+ p1(x)

dv

dx
+ p2(x)v(x)

]
dx

=

[
u∗(x)p0(x)

dv

dx

] ∣∣∣∣b
a

−
∫ b

a

d

dx

(
p0(x)u∗(x)

)dv
dx

dx

+

[
u∗(x)p1(v)v(x)

]∣∣∣∣b
a

−
∫ b

a

d

dx

(
p1(x)u∗(x)

)
v(x) dx

+

∫ b

a

u∗(x)p2(x)v(x) dx

=

∫ b

a

[
d2

dx2

(
p0(x)u(x)

)
− d

dx

(
p1(x)u(x)

)
+ p2(x)u(x)

]∗
v(x) dx

+

[
u∗(x)p0(x)

dv

dx
− d

dx

(
p0(x)u∗(x)

)
v(x) + u∗(x)p1(x)v(x)

] ∣∣∣∣b
a

Thus, we see that

L† =
d2

dx2
p0 −

d

dx
p1 + p2
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= p0
d2

dx2
+ (2p′0 − p1)

d

dx
+ p′′0 − p′1 + p2.

In order for L to be formally self-adjoint, we choose{
2p′0 − p1 = p1 =⇒ p′0 = p1

p′′0 − p′1 + p2 = p2 =⇒ p′′0 = p′1 =⇒ p′0 = p1

Thus, by choosing p1 = p′0, we have the well-known Sturm-Liouville operator given by

L =
d

dx

(
p0(x)

d

dx

)
+ p2(x).

Remark 4.2.2. What happens if p1 6= p′0? We can still make L formally self-adjoint by
choosing a suitable weight function ω(x). Suppose p0(x) is positive definite on (a, b), i.e.
p0(x) > 0 and pj(x) are all real. Define

ω(x) =
1

p0(x)
exp

[∫ x

a

p1(x′)

p0(x′)
dx′
]
.

We can rewrite L in the following form

Lu =
1

ω

d

dx

(
ωp0

du

dx

)
+ p2u.

One can show that L† = L. Thus, as long as p0(x) 6= 0, we can always define a weighted
inner product in which a real second-order differential operator is formally self-adjoint with
respect to this weighted inner product.

4.2.2 A Simple Eigenvalue Problem

Recall that a finite self-adjoint (Hermitian) matrix has a complete set of orthonormal eigen-
vectors. Does the same property hold for self-adjoint differential operators?

Example 4.2.3. Consider the differential operator L = − d2

dx2
, with domain

D(L) =
{
f, Lf ∈ L2[0, 1] : f(0) = f(1) = 0

}
.

Integrating by parts yields

〈f1, Lf2〉 =

∫ 1

0

f ∗1

(
−d

2f2

dx2

)
dx

=

∫ 1

0

(
−d

2f1

dx2

)∗
f2 dx+

[
− f ∗1 f ′2 + (f ∗1 )′f2

]∣∣∣∣1
0

= 〈Lf1, f2〉

We see that L is self-adjoint with the given boundary conditions.

The eigenvalue equation Lψ = λψ or
d2ψ

dx2
+ λψ = 0, with the boundary conditions ψ(0) =

ψ(1) = 0 has solutions ψn(x) = sin(nπx) with eigenvalues λn = n2π2. Observe that
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1. The eigenvalues are real.

2. The eigenfunctions are orthogonal, that is

2

∫ 1

0

sin(mπx) sin(nπx) dx = δmn.

3. The normalised eigenfunctions are complete, i.e. any f ∈ L2[0, 1] can be written as an
L2 convergent series of the following form

f(x) =
∞∑
n=1

an
√

2 sin(nπx).

Example 4.2.4. Consider the differential operator L = −i d
dx

, with domain

D(L) =
{
f, Lf ∈ L2[0, 1] : f(0) = f(1) = 0

}
.

We claim that L is self-adjoint. Indeed, integrating by parts gives

〈f1, Lf2〉 =

∫ 1

0

f ∗1

(
−idf2

dx

)
dx

=

[
− if ∗1 f2

]∣∣∣∣1
0

+ i

∫ 1

0

df ∗1
dx

f2 dx

= 〈Lf1, f2〉.

On the other hand, the eigenvalue equation −idψ
dx

= λψ or
dψ

dx
= iλψ has solution ψ(x) ∼ eiλx.

However, ψ(x) does not satisfy the boundary conditions as exponential function is a positive

function. Thus, L = −i d
dx

doesn’t have an eigenvalue! This suggest that the problem lies in

the boundary conditions.

4.2.3 Adjoint Boundary Conditions

To rectify the problem, we remove the requirement that D(L) = D(L†), but still ensuring that
D(L†) is defined such that Q[u, v] = 0 in (4.2.1). More precisely, given v ∈ D(L) satisfying
certain boundary conditions, we impose any required boundary conditions on u ∈ D(L†) such
that Q[u, v] = 0 in (4.2.1). Such boundary conditions on u ∈ D(L†) are called the adjoint
boundary conditions and they define D(L†).

Example 4.2.5. Consider the differential operator L = −i d
dx

, with domain

D(L) =
{
f, Lf ∈ L2[0, 1] : f(1) = 0

}
.

From previous computation, we find that

〈u, Lv〉 − 〈L†u, v〉 = −i
[
u∗(1)v(1)− u∗(0)v(0)

]
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The first term vanishes since v(1) = 0. Because v(0) can take any value, we must choose
u(0) = 0 in order for Q[u, v] to vanish. Imposing this boundary condition on u ∈ D(L†) thus

yields L† = L = −i d
dx

and

D(L†) =
{
f, Lf ∈ L2[0, 1] : f(0) = 0

}
.

We remark that although L is formally self-adjoint, L,L† are not the same operator since
D(L) 6= D(L†). We then say that L is not truly self-adjoint.

Example 4.2.6. Consider the same differential operator L = −i d
dx

, but now with a different

domain
D(L) =

{
f, Lf ∈ L2[0, 1] : f(0) = f(1) = 0

}
.

It is clear that Q[u, v] = 0 irrespective of any boundary conditions on u. That is, there is no
constraint on u. Thus, L† = L and

D(L†) =
{
f, Lf ∈ L2[0, 1]

}
.

Again, L is not truly self-adjoint since D(L) 6= D(L†).

4.2.4 Self-Adjoint Boundary Conditions

Definition 4.2.7. A formally self-adjoint operator L is truly self-adjoint if and only if L = L†

and D(L) = D(L†). Thus, one needs to impose self-adjoint boundary conditions in order
to obtain a self-adjoint operator.

Example 4.2.8. Consider the differential operator L = −i d
dx

. We investigate what boundary

conditions we need to impose so that L is truly self-adjoint. Previous calculation shows that

〈u, Lv〉 − 〈Lu, v〉 = −i
[
u∗(1)v(1)− u∗(0)v(0)

]
.

Demanding the right hand side vanishes gives us the condition

u∗(1)

u∗(0)
=
v(0)

v(1)
.

We require this to be true for any u, v obeying the same boundary conditions.

Since u, v are not a-priori related, it follows that

u∗(1)

u∗(0)
= Λ =

v(0)

v(1)
.

Since we require that both u, v belong to the same domain, we also have

Λ∗ =
u(1)

u(0)
=
v(1)

v(0)
= Λ−1.
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i.e. Λ∗ = Λ−1 =⇒ Λ = eiθ for some real phase θ ∈ R. The domain is therefore

D(L) =
{
f, Lf ∈ L2[0, 1] : f(1) = eiθf(0)

}
.

These are called twisted periodic boundary conditions. With this self-adjoint boundary
conditions, everything is groovy:

1. The eigenfunctions are ψn(x) = e(2πn+θ)ix with eigenvalues λn = 2πn+ θ.

2. The eigenvalues are real and the normalised eigenfunctions (ψn) form a complete or-
thonormal set.

Example 4.2.9. Consider the Sturm-Liouville differential operator defined by

L =
d

dx

(
p(x)

d

dx

)
+ q(x), x ∈ [a, b].

We shown previously that this is formally self-adjoint, satisfying

〈u, Lv〉 − 〈Lu, v〉 =

[
p
(
u∗v′ − (u∗)′v

)]∣∣∣∣b
a

.

As before, demanding the right hand side vanishes gives us conditions at both ends:

(u∗)′(a)

u∗(a)
=
v′(a)

v(a)
,

(u∗)′(b)

u∗(b)
=
v′(b)

v(b)
.

To ensure D(L) = D(L†), we also require that

v′(a)

v(a)
=
u′(a)

u(a)
= Λa,

v′(b)

v(b)
=
u′(b)

u(b)
= Λb.

Comparing these two conditions, we thus require that Λa = Λ∗a and Λb = Λ∗b , i.e. Λa,Λb ∈ R.
Thus, we have the following self-adjoint boundary conditions:

Λaf(a)− f ′(a) = 0

Λbf(b)− f ′(b) = 0.

4.3 Eigenvalue Problems and Spectral Theory

It can be proven that a truly self-adjoint operator T with respect to L2[a, b] inner product
posseses a complete set of mutually orthogonal eigenfunctions. The set of eigenvalues belong
to the spectrum of T , denoted σ(T ). It forms the point spectrum provided their correspond-
ing eigenfunctions belong to L2[a, b]. Usually, the eigenvalues of the point spectrum form a
discrete set, so the point spectrum is also known as the discrete spectrum. When a differen-
tial operator acts on functions on R, the functions may fail to be normalisable; the associated
eigenvalues then belong to the continuous spectrum. The spectrum maybe partially dis-
crete and partially continuous. There can also be a residual spectrum, but this is empty for
self-adjoint operators.
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4.3.1 Discrete Spectrum

Let T be a self-adjoint linear operator on a bounded domain [a, b]. The eigenvalue equation is

Tφn(x) = λnφn(x)

for integer n ∈ Z. We also imposed the normalised condition∫ b

a

φ∗n(x)φm(x) dx = δnm.

Completeness of these eigenfunctions can be expressed by the following condition∑
n∈Z

φn(x)φ∗n(y) = δ(x− y), (4.3.1)

where convergence is understood in the sense of distributions. More precisely, in order to make
sense of this notion of convergence, we have to multiply (4.3.1) by a smooth test function
f(y) and integrate with respect to y, which gives

f(x) =
∑
n∈Z

φn(x)

∫ b

a

φ∗n(y)f(y) dy =
∑
n∈Z

anφn(x),

where an =

∫ b

a

φ∗n(x′)f(x′)dx′. The upshot is we can expand any L2 functions if we can repre-

sent a delta function in terms of the eigenfunctions φn(x).

4.3.2 Continuous Spectrum

Consider the linear differential operator H = − d2

dx2
on

[
−L

2
,
L

2

]
. This operator has eigenfunc-

tions φk(x) = eikx corresponding to eigenvalues λk = k2. Suppose we impose periodic boundary
conditions at x = ±L/2. This means that

φk(−L/2) = φk(L/2) =⇒ k = kn =
2πn

L
, n ∈ Z.

To find the normalised eigenfunctions,∫ L/2

−L/2
φ∗n(x)φm(x) dx =

∫ L/2

−L/2
ei

2π
L

(m−n)x dx =

{
L if m = n,

0 if m 6= n.
=⇒ φn(x) =

1√
L
eiknx.

Referring to (4.3.1), the completeness condition is

∞∑
n=−∞

1

L
eiknxe−ikny = δ(x− y), x, y ∈

[
−L

2
,
L

2

]
.

As L −→ ∞, the eigenvalues become so close together, they can no longer be distinguished
and σ(H) −→ R. Moreover, the sum over n becomes an integral

∞∑
n=−∞

1

L
eiknxe−ikny −→

∫ (
1

L
eikxe−iky

)
dn =

∫ (
1

L
eikxe−iky

)(
dn

dk

)
dk,
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where
dn

dk
=

L

2π
is called the density of states. Note that

dn

dk
is the Radon-Nikodym

derivative, i.e. it is a ratio of measures. Thus, in the limit as L −→ ∞, the completeness
condition becomes: ∫ ∞

−∞
eik(x−y) dk

2π
= δ(x− y).

When L =∞, φk(x) ∼ eikx is no longer normalisable on L2(R) since∫ ∞
−∞

φ∗k(x)φk(x) dx =

∫ ∞
−∞

e−ikxeikx dx =

∫ ∞
−∞

dx =∞!

Strictly speaking, φk(x) is not a true eigenfunction and points in the continuous spectrum are
not actually eigenvalues. More rigorously, a point λ lies in the continuous spectrum if for any
ε > 0, there exists an approximate eigenfunction φε ∈ L2(R) such that ‖φε‖ = 1 and
‖Hφε− λφε‖ < ε. In other words, the inverse operator (resolvent) (H − λI)−1 is unbounded.

4.3.3 Mixed Spectrum

Consider the following eigenvalue equation, known as the Poschel-Teller equation

Hψ =

[
− d2

dx2
− 2sech2(x)

]
ψ = λψ, x ∈ R.

We try a solution of the form ψk(x) =
[
a+ btanh(x)

]
eikx. This gives

[
− d2

dx2
− 2sech2(x)

]
ψk(x) = k2ψk(x)− 2(ikb+ a)sech2(x)eikx.

Thus, Hψk = k2ψk provided ikb+ a = 0 =⇒ ψk(x) = b
[
− ik + tanh(x)

]
eikx.

For k 6= 0, the formal normalised eigenfunctions are

ψk(x) =
1√

1 + k2
eikx
[
− ik + tanh(x)

]
.

It is constructed in such a way that

ψk(x)ψ∗k(x
′) =

1√
1 + k2

eikx
[
− ik + tanh(x)

] 1√
1 + k2

e−ikx
′
[
ik + tanh(y)

]
=

1

1 + k2
eik(x−x′)

[
− ik + tanh(x)

][
ik + tanh(x′)

]
−→ 1

1 + k2
eik(x−x′)(−ik + 1)(ik + 1) as |x| −→ ∞

=
1 + k2

1 + k2
eik(x−x′) = eik(x−x′).
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Thus, σ(H) contains a continuous part with λk = k2 and ψk(x) as “eigenfunctions”. For the
special case λk = 0,

d2ψ0(x)

dx2
= −2sech2(x)ψ0(x) =⇒ ψ0(x) =

1√
2

sech(x).

This is normalisable, i.e. λ0 = 0 belongs to the discrete spectrum.

Let us compute the difference:

I = δ(x− x′)−
∫ ∞
−∞

ψk(x)ψ∗k(x
′)
dk

2π
=

∫ ∞
−∞

[
eik(x−x′) − ψk(x)ψ∗k(x

′)
] dk

2π

=

∫ ∞
−∞

eik(x−x′)

1 + k2

[
(1 + k2)− k2 + ik

(
tanh(x′)− tanh(x)

)
− tanh(x)tanh(x′)

]dk
2π
.

It can be shown (by residue theorem) that∫ ∞
−∞

(
eik(x−x′)

1 + k2

)
dk

2π
=

1

2
e−|x−x

′|

∫ ∞
−∞

(
eik(x−x′)ik

1 + k2

)
dk

2π
= −1

2
e−|x−x

′|sgn(x− x′).

Hence, I =
1

2

[
1 − sgn(x − x′)

(
tanh(x′) − tanh(x)

)
− tanh(x)tanh(x′)

]
e−|x−x

′|. WLOG, take

x > x′. Then

I =
1

2

[
1−

(
tanh(x′)− tanh(x)

)
− tanh(x)tanh(x′)

]
e−(x−x′)

=
1

2

[
1 + tanh(x)− tanh(x′)− tanh(x)tanh(x′)

]
e−(x−x′)

=
1

2

[
1 + tanh(x)

][
1− tanh(x′)

]
e−(x−x′)

=
1

2
sech(x)sech(x′)

= ψ0(x)ψ0(x′).

Thus, we have the completeness condition

ψ0(x)ψ0(x′) +

∫ ∞
−∞

ψ∗k(x)ψk(x
′)
dk

2π
= δ(x− x′).

4.3.4 Rayleigh-Ritz Variational Principle

Consider the Sturm-Liouville operator

Lφ = − d

dx

(
p
dφ

dx

)
+ qφ, x ∈ [a, b], (4.3.2)
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together with self-adjoint boundary conditions

αφ(a) + βφ′(a) = 0 (4.3.3a)

α̂φ(b) + β̂φ′(b) = 0. (4.3.3b)

where p, q are real-valued functions. Suppose the following two statements hold:

1. There exists a countable infinite set of eigenvalues (λn) of (4.3.2) that are real-valued
and non-negative such that

0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ . . . . . .

2. The corresponding eigenfunctions form a complete orthonormal set.

〈φn, φm〉 =

∫ b

a

φ∗n(x)φm(x) dx = δmn.

Using these, we derive a variational principle characterising eigenvalues of (4.3.2).

Consider a sufficiently smooth, bounded function u with the following properties:

u(x) =
∑
k∈Z+

ukφk(x), uk = 〈u, φk〉, ‖u‖2 = 1. (4.3.4)

Introducing the energy integral E[u] = 〈u, Lu〉. Substituting the Fourier series expansion
(4.3.4) of u into E[u] yields

E[u] = 〈u, Lu〉 =

∫ b

a

[ ∑
k∈Z+

u∗kφ
∗
k(x)

]
L

[ ∑
j∈Z+

ujφj(x)

]
dx

=
∑
k,j∈Z+

u∗kuj

[∫ b

a

φ∗k(x)
(
Lφj(x)

)]
dx

=
∑
k,j∈Z+

u∗kuj

∫ b

a

φ∗k(x)λjφj(x) dx

=
∑
k,j∈Z+

u∗kuj

[
λj〈φk, φj〉

]
=
∑
k∈Z+

λk|uk|2.

From the ordering of the eigenvalues,

E[u] =
∑
k∈Z+

λk|uk|2 ≥ λ1

∑
k∈Z+

|uk|2 = λ1

∑
k∈Z+

|〈u, φk〉|2 = λ1‖u‖2 = λ1,

where we use the Parseval’s identity and the assumption that all eigenvalues are non-
negative. We see that the smallest eigenvalue λ1 is obtained by minimising E[u] with respect
to all admissible functions u satisfying ‖u‖2 = 1. Moreover, a minimum occurs at u = φ1, since

E[φ1] =
∑
k∈Z+

λk|〈φ1, φk〉|2 = λ1.



86 4.3. Eigenvalue Problems and Spectral Theory

Observe that by normalising all functions u ∈ D(L) and thus relaxing the constraint ‖u‖2 =
1, the problem of finding the smallest eigenvalue λ1 is equivalent to the following minimisation
problem, called the Rayleigh quotient

λ1 = inf
u∈D(L)

〈u, Lu〉
〈u, u〉

.

Similarly, if we restrict the class of admissible functions by requiring u also satisfying uk =
〈u, φk〉 = 0 for all k = 1, 2, . . . , n− 1, i.e. u is orthogonal to lower eigenfunctions, then

E[u] =
∞∑
j=n

λj|uj|2 ≥ λn.

By defining Vn = span(φ1, φ2, . . . , φn−1), the problem of finding the nth eigenvalue λn is equiv-
alent to the following minimisation problem

λn = inf
u∈D(L),u∈V ⊥n

〈u, Lu〉
〈u, u〉

.

Of course, all of these are true with the assumptions that all eigenvalues are non-negative and
their corresponding eigenfunctions form a complete orthonormal set. We now show that this
is indeed the case for the Sturm-Liouville eigenvalue problem.

Theorem 4.3.1. For the Sturm-Liouville operator L = − d

dx

(
p(x)

d

dx

)
+ q(x) with p, q non-

negative real-valued functions, we have the following results:

(a) The eigenvalues λn −→∞ as n −→∞.

(b) The corresponding eigenfunctions (φn) form a complete orthonormal set.

Proof. We now use the variational principle that we just developed to prove these two state-
ments. For simplicity, consider the Dirichlet boundary condition, i.e. u(a) = u(b) = 0.

(a) Assuming u is real. Expanding E[u] and integrating by parts gives

E[u] = 〈u, Lu〉 =

∫ b

a

u∗Ludx

=

∫ b

a

u
[
− (pu′)′ + qu

]
dx

=

∫ b

a

[
pu′2 + qu2

]
dx−

[
u∗pu′

]∣∣∣b
a

=

∫ b

a

[
pu′2 + qu2

]
dx.

where the boundary term vanishes. Consider the following expression

E[u]

‖u‖2
=

∫ b

a

[
pu′2 + qu2

]
dx∫ b

a

u2 dx

,
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and denote the following quantity

pM = max
x∈[a,b]

p(x), qM = max
x∈[a,b]

q(x)

pm = min
x∈[a,b]

p(x), qm = min
x∈[a,b]

q(x)

Replacing p(x), q(x) by the constant pM , qM , we obtain the following modified Rayleigh
Quotient

EM [u]

‖u‖2
≥ E[u]

‖u‖2
=⇒ λ(M)

n ≥ λn.

Similarly, replacing p(x), q(x) by the constant pm, qm, we obtain the other modified
Rayleigh Quotient

Em[u]

‖u‖2
≤ E[u]

‖u‖2
=⇒ λ(m)

n ≤ λn.

Combining these two inequalities gives λ
(m)
n ≤ λn ≤ λ

(M)
n .

Now, consider two intervals Im, IM such that Im ⊂ [a, b] ⊂ IM .

• Consider the variational problem for
EM [u]

‖u‖2
on Im. The admissible functions u must

now vanish on ∂Im, making the space of admissible functions smaller. This additional
constraint implies that λ

(M)
n ≤ λ̂

(M)
n .

• Similarly, consider the variational problem for
Em[u]

‖u‖2
on IM . The admissible functions

u do not have to vanish at x = a, b, making the space of admissible function larger.
This implies that λ̂

(m)
n ≤ λ

(m)
n .

In summary, we have the hierarchy

λ̂(m)
n ≤ λ(m)

n ≤ λn ≤ λ(M)
n ≤ λ̂(M)

n . (4.3.5)

The eigenvalues λ̂
(m)
n and λ̂

(M)
n can be solved exactly since we have a constant coefficient

ODE. We find that both λ̂
(m)
n , λ̂

(M)
n −→∞ as n −→∞. Hence, λn −→∞ as n −→∞.

(b) Consider the orthonormal set of eigenfunctions (φk), they satisfy the eigenvalue equation
and boundary conditions

Lφk = − d

dx

(
p(x)

dφk
dx

(x)

)
+ q(x)φk(x), φk(x) = 0 at x = a, b.

Define the remainder term Rn(x) = u(x)−
n∑
k=1

ukφk, with uk = 〈u, φk〉. We need to show

that lim
n→∞

‖Rn(x)‖ = 0. Since u(x) and φk(x) are admissable functions for the variational

problem, so is the remainder Rn(x). For all j = 1, . . . , n,

〈Rn, φj〉 =

〈
u−

n∑
k=1

ukφk, φj

〉
= 〈u, φj〉 −

n∑
k=1

u∗k〈φk, φj〉 = 0. (4.3.6)
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By construction, we then have

E[Rn]

〈Rn, Rn〉
≥ λn+1 =⇒ ‖Rn‖2 ≤ E[Rn]

λn+1

.

We have just shown that λn+1 −→ ∞ as n −→ ∞, so ‖Rn‖ −→ 0 as n −→ ∞ provided
E[Rn] is uniformly bounded in n.

Let Ωn =
n∑
k=1

ukφk. Then

E[u] = E[Rn + Ωn]

= 〈Rn + Ωn, L(Rn + Ωn)〉
= 〈Rn, LRn〉+ 〈Rn, LΩn〉+ 〈Ωn, LRn〉+ 〈Ωn, LΩn〉
= E[Rn] + E[Ωn] + 〈LRn,Ωn〉+ 〈Ωn, LRn〉
= E[Rn] + E[ΩN ] + 2Re(〈LRn,Ωn〉)
= E[Rn] + E[Ωn] + 2〈LRn,Ωn〉

where we use the self-adjointness of L on the fourth equality and the assumption that
u, p, q are all real-valued functions. By repeating integration by parts,

〈LRn,Ωn〉 =

〈
LRn,

n∑
k=1

ukφk

〉
=

n∑
k=1

uk〈LRn, φk〉

〈LRn, φk〉 =

∫ b

a

(
− (pR′n)′ + qRn

)
φk dx

=
[
− pR′nφk

]∣∣∣b
a

+

∫ b

a

(
pR′nφ

′
k + qRnφk

)
dx

=
[
− pR′nφk +Rnpφ

′
k

]∣∣∣b
a

+

∫ b

a

(
−Rn(pφ′k)

′ +Rnqφk

)
dx

Because the Dirichlet boundary condition is homogeneous, D(L) is a vector space. Thus,
φk(x), u(x) ∈ D(L) =⇒ Rn(x) ∈ D(L) and we immediately see that the boundary term
vanishes. We are left with∫ b

a

(
−Rn(pφ′k)

′ + qRnφk

)
dx =

∫ b

a

Rn

(
− (pφ′k)

′ + qφk

)
dx

= λk

∫ b

a

Rnφk dx

= λk〈Rn, φk〉 = 0,

which follows from (4.3.6) since 1 ≤ k ≤ n. Thus, 〈LRn,Ωn〉 = 0 and

E[Rn] = E[u]− E[Ωn]

= E[u]− E

[
n∑
k=1

ukφk

]
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= E[u]−
∫ b

a

(
n∑
k=1

u∗kφ
∗
k

)
L

(
n∑
j=1

ujφj

)
dx

= E[u]−
n∑

k,j=1

u∗kuj〈φk, Lφj〉

= E[u]−
n∑

k,j=1

u∗kujλj〈φk, φj〉

= E[u]−
n∑
k=1

λk|uk|2

≤ E[u],

where we crucially use the fact that λk ≥ 0 for all k ≥ 1. Since u is an admissible function,
E[u] is a finite value. Hence, E(Rn) is uniformly bounded in n, and we conclude that
‖Rn‖ −→ 0 as n −→∞.

�

Remark 4.3.2. Let us justfiy the eigenvalue inequality (4.3.5) we proved in the first part of
the theorem.

1. It seems like a lower bound of the form λ
(m)
n ≤ λn is sufficient. Indeed, this inequality

tells us that λ
(m)
n −→ ∞ as n −→ ∞ =⇒ λn −→ ∞ as n −→ ∞. However, it doesn’t

guarantee that λn <∞ for finite n.

2. The upper bound now comes into play. Now, we have the following inequality:

λ(m)
n ≤ λn ≤ λ(M)

n

If additionally, we have that λ
(M)
n −→ ∞ as n −→ ∞, this “sandwich” guarantees that

λn <∞ for arbitrary but finite n.

3. Why is the inequality λ
(m)
n ≤ λn ≤ λ

(M)
n not enough then? We are implicitly assuming

that we can show λ
(m)
n , λ

(M)
n −→ ∞ as n −→ ∞. In general (even in 2D), they can be

really difficult to solve explicitly!

4.4 Distribution

In this section, we explore the analogy between matrices and linear operators on infinite-
dimensional spaces. In the case of a finite-dimensional space, we choose a basis set and represent
the linear operator in terms of the action of a matrix A ∈ Rm×n, i.e.

y = Ax or yi =
n∑
j=1

Aijxj, 1 ≤ i ≤ m.

Formally speaking, the function space analogue of this, g = Af , is

g(x) =

∫ b

a

A(x, y)f(y) dy,
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where we replace the summation over j by integration over a dummy variable y. If A(x, y) is
an ordinary function, then A(x, y) is called an integral kernel. The Dirac delta function
is the analogue of identity operator in infinite-dimensional vector spaces.

f(x) =

∫ b

a

δ(x− y)f(y) dy.

Note that δ(x−y) is not an ordinary function, it is actually a generalised function/distribution
as we will see later.

4.4.1 Distributions and Test Functions

We often think of δ(x) as being a “limit” of a sequence of functions with increasing height and
decreasing width, such that its area under the curve is fixed.

Example 4.4.1. Consider the spike function

δε(x− a) =


1

ε
if x ∈

[
a− ε

2
, a+

ε

2

]
,

0 otherwise.

The L2-norm of δε is

‖δε‖2 =

∫ ∞
−∞
|δε(x)|2 dx =

1

ε2

∫ a+ε/2

a−ε/2
dx =

1

ε
−→∞ as ε −→ 0.

Thus, as ε −→ 0, the spike function δε doesn’t converge to any function in L2(R).

Example 4.4.2. Another example arises from Fourier theory:

δλ(x) =
1

2π

∫ λ

−λ
eikx dk =

1

2π

eikx

ix

∣∣∣∣λ
−λ

=
1

π

(
sin(λx)

x

)
.

The L2 norm of δλ is

‖δλ‖2 =

∫ ∞
−∞

sin2(λx)

π2x2
dx =

λ2

π2

∫ ∞
−∞

sin2(λx)

λ2x2
dx =

λ

π2

∫ ∞
−∞

sin2(x)

x2
dx

=
λ

π2
π =

λ

π
−→∞ as λ −→∞.

It wasn’t until late 1940s, that Laurent Schwartz developed the theory of distribution
and succeeded in explaining all these singular objects. To make sense of the delta function,
Schwartz exploited the concept of a dual space from linear algebra. Recall that, the dual
space V ∗ of a vector space V is the vector space of all linear functions from V to R (or C). We
can interpret δ(x) as an element of the dual space of a vector space D, called the space of test
functions. For our purposes, test functions are smooth (infinitely differentiable) functions that
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converges rapidly to zero at infinity. Precise definition of test functions is problem-dependent.
A common example is C∞c , the space of smooth functions with compact support. In Fourier
theory and harmonic analysis, one usually works with the Schwartz space, S(R).

Remark 4.4.3. The “nice” behaviour of test functions compensate for the “nasty” behaviour
of δ(x) and its relatives. However, not every linear map D −→ R is admissible, we actually
require these maps to be continuous. More precisely, if ϕn −→ ϕ in D, then u ∈ D∗ must
obey u(ϕn) −→ u(ϕ). A topology must be specified on D in order to talk about conver-
gence/continuity.

Definition 4.4.4. In terms of the dual space formulation, we define the Dirac delta function
as the linear map satisfying

(δ, ϕ) = ϕ(0) for all ϕ ∈ D.

The notation is not to be confused with an inner product. It is actually a duality pairing.

Example 4.4.5. Assuming integration by parts is valid, we have that∫ ∞
−∞

δ′(x)ϕ(x) dx = −
∫ ∞
−∞

δ(x)
dϕ

dx
dx = −ϕ′(0).

This suggests that we can define the distribution δ(n) as the linear map satisfying

(δ(n), ϕ) = (−1)nϕ(n)(0).

L2 functions are not “nice” enough for their dual space to accommodate the Dirac delta
function. The first observation is that L2 is a reflexive Hilbert space. The Riesz-Frechet rep-
resentation theorem asserts that any continuous, linear map F : L2 −→ R can be written
as F (ϕ) = 〈f, ϕ〉 for some unique f ∈ L2. However, δ is not a continuous map from L2 to R.
Another reason is that L2 functions are only defined up to sets of measure zero, consequently
ϕ(0) for ϕ ∈ L2 is undefined. The upshot is, to work with much more exotic distributions, the
space of test functions has to be as nice as they can be.

4.4.2 Weak Derivatives

Definition 4.4.6. We define the weak or distributional derivative, v(x) of a distribution
u by requiring the following to be true for all test functions ϕ ∈ D:∫

v(x)ϕ(x) dx = −
∫
u(x)ϕ′(x) dx.

Remark 4.4.7. The weak derivative is a well-defined distribution. This definition is obtained
by formally performing integration by parts. The same idea also applies to ordinary functions
that are not differentiable in the classical sense.
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Example 4.4.8. In the weak sense,
d

dx
|x| = sgn(x).∫ ∞

−∞

d

dx
|x|ϕ(x) dx = −

∫ ∞
−∞
|x|ϕ′(x) dx

= −
∫ ∞

0

xϕ′(x) dx+

∫ 0

−∞
xϕ′(x) dx

= −
[
xϕ(x)

]∣∣∣∞
0

+

∫ ∞
0

ϕ(x) dx+
[
xϕ(x)

]∣∣∣0
−∞
−
∫ 0

−∞
ϕ(x) dx

=

∫ ∞
0

ϕ(x) dx−
∫ 0

−∞
ϕ(x) dx

=

∫ ∞
−∞

sgn(x)ϕ(x) dx.

Example 4.4.9. In the weak sense,
d

dx
sgn(x) = 2δ(x).∫ ∞

−∞

(
d

dx
sgn(x)

)
ϕ(x) dx = −

∫ ∞
−∞

sgn(x)ϕ′(x) dx

= −
∫ ∞

0

ϕ′(x) dx+

∫ 0

−∞
ϕ′(x) dx

= 2ϕ(0)

=

∫ ∞
−∞

2δ(x)ϕ(x) dx.

Example 4.4.10. Solve the differential equation u′ = 0 in the sense of distribution. That is,
we need to find u such that

0 = (u′, ϕ) = −(u, ϕ′) for all ϕ ∈ C∞c (R).

First, we need to determine the action of u on all test functions ϕ ∈ C∞c (R) such that (u,Ψ) = 0
whenever Ψ(x) = ϕ′(x).

• W claim that Ψ(x) = ϕ′(x) for some ϕ ∈ C∞c (R) if and only if

∫ ∞
−∞

Ψ(x) dx = 0.

Proof. If Ψ(x) = ϕ′(x) for some ϕ ∈ C∞c (R), then∫ ∞
−∞

Ψ(x) dx = ϕ(x)
∣∣∣∞
−∞

= 0.

Conversely, suppose

∫ ∞
−∞

Ψ(x) dx = 0. Define

ϕ(x) =

∫ x

−∞
Ψ(s) ds.
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Then ϕ′(x) = Ψ(x) and ϕ ∈ C∞c (R) since Ψ ∈ C∞c (R) and

∫ ∞
−∞

Ψ(x)dx = 0.

�

• Choose an arbitrary ϕ0 ∈ C∞c (R) such that

∫ ∞
−∞

ϕ0(x) dx = 1. We can rewrite any

ϕ ∈ C∞c (R) in the following form:

ϕ(x) = ϕ0(x)

∫ ∞
−∞

ϕ(s) ds+

[
ϕ(x)− ϕ0(x)

∫ ∞
−∞

ϕ(s) ds

]
= ϕ0(x)

∫ ∞
−∞

ϕ(s) ds+ Ψ(x).

Since ∫ ∞
−∞

Ψ(x) dx =

∫ ∞
−∞

ϕ(x) dx−
(∫ ∞
−∞

ϕ(s) ds

)∫ ∞
−∞

ϕ0(x) dx = 0,

the claim above tells us that there exists ϕ̂ ∈ C∞c (R) such that Ψ(x) = ϕ̂′(x). Conse-
quently, (u,Ψ) = 0 and

(u, ϕ) =

(
u, ϕ0(x)

∫ ∞
−∞

ϕ(s) ds+ Ψ(x)

)
=

[∫ ∞
−∞

ϕ(s) ds

]
(u, ϕ0) + (u,Ψ)

= (u, ϕ0)

[∫ ∞
−∞

ϕ(s) ds

]
.

Since (u, ϕ0) ∈ R, we have that for any ϕ ∈ C∞c (R), (u, ϕ) = (c, ϕ). The distributional
solution is therefore u = c for some constant c ∈ R.

4.5 Green’s Function

Green’s function is useful for solving the inhomogeneous linear equation Ly = f , where L is
a linear differential operator. Roughly speaking, it is an integral kernel representing the
inverse operator L−1.

4.5.1 Fredholm Alternative

Theorem 4.5.1 (Fredholm Alternative). Let V be a finite-dimensional vector space equipped
with an inner product and A : V −→ V a linear operator. Exactly one of the following must
hold:

(a) Ax = b has a unique solution. (A−1 exists)

(b) Ax = 0 has a non-trivial solution. In this case, then Ax = b has no solution unless b is
orthogonal to all solutions of A†x = 0.
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Remark 4.5.2. This result continues to hold for linear differential operators on function spaces,
defined on a finite interval, provided that L† is defined using adjoint boundary conditions. In
general, N (L) 6= N (L†) unless the number of boundary conditions is equal to the order of the
equation.

Example 4.5.3. Consider Ly =
dy

dx
, with boundary conditions y(0) = y(1) = 0, x ∈ [0, 1].

Ly = 0 only has the trivial solution y ≡ 0 due to the boundary conditions. Hence, if solution
to Ly = f exists, it will be unique. For any y1 ∈ D(L),

〈y2, Ly1〉 =

∫ 1

0

y2

(
dy1

dx

)
dx = −

∫ 1

0

(
dy2

dx

)
y1 dx = 〈L†y2, y1〉.

Thus, L† = − d

dx
with no boundary conditions needed to define D(L†). Clearly, L†y = 0 has a

non-trivial solution y = 1. It follows from Fredholm alternative that Ly = f has no solution
unless f is orthogonal to 1, i.e.

〈f, 1〉 =

∫ 1

0

f(x) dx = 0.

If this condition is satisfied, then y(x) =

∫ x

0

f(s) ds. Clearly, y(0) = y(1) = 0.

4.5.2 Green’s Functions for Homogeneous Boundary Conditions

Consider a linear differential operator L, with N (L) = N (L†) = {0}. To solve the equation
Ly = f for a given f , the most natural/naive method is to find the inverse operator L−1. We
represent L−1 as an integral kernel (L−1)x,ξ = G(x, ξ), satisfying

LxG(x, ξ) = δ(x− ξ). (4.5.1)

Here, the subscript on Lx means that L acts on the first argument, x, of G. The solution to
Ly = f can now be written as

y(x) =

∫
G(x, ξ)f(ξ) dξ, (4.5.2)

since

Ly(x) =

∫
LxG(x, ξ)f(ξ) dξ =

∫
δ(x− ξ)f(ξ) dξ = f(x).

The problem is now reduces to constructing G(x, ξ). There are 3 necessary conditions on
G(x, ξ):

1. For a fixed ξ, the function χ(x) = G(x, ξ) must have some discontinuous behaviour at
x = ξ in order to generate the Dirac delta function δ(x − ξ). This is motivated by the
following fact

d

dx
H(x− ξ) = δ(x− ξ) in the weak sense,

where H(x− ξ) is the Heaviside function.
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2. χ(x) must satisfy Lχ = 0 for all x 6= ξ so that (4.5.1) is satisfied.

3. χ(x) must obey the same homogeneous boundary conditions as y(x). This ensures that
the solution y(x) given by (4.5.2) satisfies the required boundary conditions. It also en-
sures that R(G) ⊂ D(L), otherwise the composition LG = I does not make sense.

Example 4.5.4. Consider the Sturm-Liouville differential operator

d

dx

(
p(x)

dy

dx

)
+ q(x)y(x) = f(x), x ∈ [a, b] ⊂ R,

with homogeneous self-adjoint boundary conditions

y′(a)

y(a)
=
β

α
,
y′(b)

y(b)
=
β̂

α̂
.

We want to construct a function G(x, ξ) such that LG = (pG′)′ + qG = δ(x− ξ).

First, we require G to be continuous at x = ξ; otherwise the second derivative applied to a
jump function will generate δ′ term. Let G(x, ξ) be defined as follows

G(x, ξ) =

{
AyL(x)yR(ξ) if x < ξ,

AyL(ξ)yR(x) if x > ξ.

This is continuous at x = ξ by construction. We choose yL, yR such that

• yL(x) satisfies LyL = 0 and the left boundary condition.

• yR(x) satisfies LyR = 0 and the right boundary condition.

With these choices, we see that G(x, ξ) satisfies the homogeneous boundary conditions and
LG = δ(x− ξ).

In order to determine conditions on G at x = ξ, we integrate LG = δ from x = ξ − ε to
x = ξ + ε: ∫ ξ+ε

ξ−ε
(pG′)′ + qG dx =

∫ ξ+ε

ξ−ε
δ(x− ξ) dx = 1.

As ε −→ 0,

∫ ξ+ε

ξ−ε
qG dx −→ 0 since G(x, ξ) and q(x) are continuous functions. Thus, we are

left with

lim
ε→0

[
p(ξ + ε)G′(ξ + ε, ξ)− p(ξ − ε)G′(ξ − ε, ξ)

]
= 1

lim
ε→0

p(ξ)

[(
G′(ξ + ε, ξ)−G′(ξ − ε, ξ)

)]
= 1

lim
ε→0

Ap(ξ)

[
yL(ξ)y′R(ξ + ε)− y′L(ξ − ε)yR(ξ)

]
= 1
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Ap(ξ)

[
yL(ξ)y′R(ξ)− y′L(ξ)yR(ξ)

]
= 1

Ap(ξ)W (ξ) = 1

where W (ξ) is the Wronskian of yL, yR. Thus, provided p(ξ)W (ξ) 6= 0,

G(x, ξ) =


1

p(ξ)W (ξ)
yL(x)yR(ξ) if x < ξ,

1

p(ξ)W (ξ)
yL(ξ)yR(x) if x > ξ.

For the Sturm-Liouville equation, A = p(ξ)W (ξ) is constant. To see this, we first rewrite
the homogeneous Sturm-Liouville equation py′′+p′y′+ qy = 0 into systems of first order ODE:

y′ = z

z′ = y′′ = −p
′z

p
− qy

p

=⇒

y′
z′

 =

 0 1

−q/p −p′/p

y
z

 .
Invoking the Liouville’s formula for non-autonomous, homogeneous linear ODE:

W (ξ) = W (0) exp

[
−
∫ ξ

0

p′(x)

p(x)
dx

]
= W (0) exp

[
− ln

(
p(ξ)

p(0)

)]
=
W (0)p(0)

p(ξ)
for all ξ.

Hence, the solution to Ly = f is given by

y(x) =
1

pW

{
yL(x)

∫ b

x

yR(ξ)f(ξ) dξ + yR(x)

∫ x

a

yL(ξ)f(ξ) dξ

}
.

Remark 4.5.5. The constancy of pW means that G is symmetric, i.e. G(x, ξ) = G(ξ, x). We
require that W 6= 0, which is an indication of linear independency. If W = 0, this means that
yL ∼ yR and the single function yR would satisfy LyR = 0 and the boundary conditions. That
is, N (L) is non-trivial and solutions (if they exists) to Ly = f are not unique.

Example 4.5.6. Consider the boundary value problem

−d
2y

dx2
= f(x), y(0) = y(1) = 0.

Solutions to Ly = 0 are of the form y(x) = Ax+B. Solving for the boundary conditions yields
yL(x) = x and yR(x) = 1− x. Also,

W = yLy
′
R − y′LyR = x(−1)− 1(1− x) = −1 6= 0.

Therefore,

G(x, ξ) =

{
x(1− ξ) if 0 < x < ξ,

ξ(1− x) if ξ < x < 1.

and

y(x) =

∫ 1

0

G(x, ξ)f(ξ) dξ =

∫ 1

x

x(1− ξ)f(ξ) dξ +

∫ x

0

ξ(1− x)f(ξ) dξ

= (1− x)

∫ x

0

ξf(ξ) dξ + x

∫ 1

x

(1− ξ)f(ξ) dξ.‘
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4.5.3 Modified Green’s Function

When the equation Ly = 0 has a non-trivial solution, there can be no unique solution to
Ly = f , but solution will still exists if f ∈ N (L†)⊥. One can express the family of solutions
using the modified Green’s function.

Example 4.5.7. Consider the following boundary value problem

Ly = −d
2y

dx2
= f(x), y′(0) = y′(1) = 0.

Ly = 0 has a non-trivial solution y = 1. The operator is self-adjoint in L2[0, 1] and Fredholm
alternative says that there will be no solution to Ly = f unless∫ 1

0

f(x) dx = 0.

Observe that we cannot define Green’s function as a solution to

− ∂2

∂x2
G(x, ξ) = LxG(x, ξ) = δ(x− ξ),

since

∫ 1

0

LxG(x, ξ) dx = 0, but

∫ 1

0

δ(x − ξ) dx = 1. This can be rectified by modifying the

definition of Green’s function. The above suggests defining G(x, ξ) according to the modified
equation

− ∂2

∂x2
G(x, ξ) = LxG(x, ξ) = δ(x− ξ)− 1.

• Integrating once with respect to x the equation −∂
2G

∂x2
= −1 yields

Gx(x, ξ) =

{
x+ AL = x if 0 < x < ξ,

x+ AR = x− 1 if ξ < x < 1,

where AL and AR are found by using the boundary conditions Gx(0, ξ) = Gx(1, ξ) = 0.
Integrating Gx(x, ξ) with respect to x yields

G(x, ξ) =


1

2
x2 +BL if 0 < x < ξ,

1

2
x2 − x+BR if ξ < x < 1.

where BL, BR are functions of ξ.

• Continuity at x = ξ gives BL = BR − ξ. Thus,

G(x, ξ) =


1

2
x2 +BR − ξ if 0 < x < ξ,

1

2
x2 − x+BR if ξ < x < 1.
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Furthermore, for this particular structure of G(x, ξ), we find that the jump discontinuity
condition

lim
ε→0
−
[
Gx(ξ + ε, ξ)−Gx(ξ − ε, ξ)

]
= 1,

is automatically satisfied, which means that there is no restriction on BR(ξ).

• We choose BR(ξ) =
1

2
ξ2 +

1

3
so that G(x, ξ) is symmetric. Hence,

G(x, ξ) =


1

3
− ξ +

1

2
(x2 + ξ2) if 0 < x < ξ,

1

3
− x+

1

2
(x2 + ξ2) if ξ < x < 1,

and a solution is given by

y(x) =

∫ 1

0

G(x, ξ)f(ξ) dξ + A,

where A is an arbitrary constant. Note that an additive constant C in G does not

contribute to a solution due to the requirement

∫ 1

0

f(x)dx = 0, i.e.

∫ 1

0

(
G(x, ξ) + C

)
f(ξ) dξ =

∫ 1

0

(
G(x, ξ)f(ξ) + Cf(ξ)

)
dξ =

∫ 1

0

G(x, ξ)f(ξ) dξ.

4.5.4 Eigenfunction Expansions

This subsection is to address why we can always modified the Green’s function definition and
how to modify it. Recall that self-adjoint operators possess a complete set of eigenfunctions,
which we can use to expand the Green’s function. Let Lφn = λnφn and assume λn 6= 0 for all
n ≥ 1; this means that L is invertible since absence of zero eigenvalue implies N (L) = {0}.
The Green’s function then has eigenfunctions expansion given by

G(x, ξ) =
∞∑
n=1

φn(x)φ∗n(ξ)

λn
,

since

LxG(x, ξ) = Lx

(
∞∑
n=1

φn(x)φ∗n(ξ)

λn

)
=
∞∑
n=1

Lx(φn(x))
φ∗n(ξ)

λn

=
∞∑
n=1

φn(x)φ∗n(ξ)

= δ(x− ξ),

where the last equality follows from completeness of eigenfunctions.
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Example 4.5.8. Suppose that L = − d

dx2
, with domain

D(L) =
{
y, Ly ∈ L2[0, 1] : y(0) = y(1) = 0

}
.

The Green’s function is given by

G(x, ξ) =

{
x(1− ξ) if 0 < x < ξ,

ξ(1− x) if ξ < x < 1.

Alternatively, the eigenvalue equation Lφn = λnφn has normalised eigenfunctions φn(x) =√
2 sin(nπx) with corresponding eigenvalues λn = n2π2. Thus,

G(x, ξ) =
∞∑
n=1

2

n2π2
sin(nπx) sin(nπξ).

When one or more eigenvalues are zero, i.e. N (L) is non-trivial, a modified Green’s function
is obtained by simply omitting the corresponding terms in the series. More precisely, we define
the modified Green’s function as

Gmod(x, ξ) =
∑
λn 6=0

φn(x)φ∗n(ξ)

λn
,

which gives

LGmod(x, ξ) =
∑
λn 6=0

φn(x)φ∗n(ξ) = δ(x− ξ)−
∑
λn=0

φn(x)φ∗n(x).

4.5.5 Inhomogeneous Boundary Conditions

Suppose we wish to solve the following boundary value problem

−d
2y

dx2
= f(x), y(0) = a, y(1) = b.

We can still use the Green’s function for homogeneous boundary conditions. We need to go
back to the first principle, where we will pick up boundary terms. We saw previously that

G(x, ξ) =

{
x(1− ξ) if 0 < x < ξ,

ξ(1− x) if ξ < x < 1.

Using Green’s theorem,

〈y, LG〉 − 〈L†y,G〉 =

∫ 1

0

[
y(x)

(
−Gxx(x, ξ)

)
−
(
− y′′(x)

)
G(x, ξ)

]
dx

=
[
−Gxy

]∣∣∣x=1

x=0
+

∫ 1

0

[
y′(x)Gx(x, ξ)

]
dx

−
[
− y′G

]∣∣∣x=1

x=0
−
∫ 1

0

[
y′(x)Gx(x, ξ)

]
dx
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=
[
G(x, ξ)y′(x)−Gx(x, ξ)y(x)

]∣∣∣x=1

x=0

= G(1, ξ)y′(1)−Gx(1, ξ)y(1)−G(0, ξ)y′(0) +Gx(0, ξ)y(0)

= (0)y′(1)− (−ξ)y(1)− (0)y′(0) + (1− ξ)y(0)

= (1− ξ)y(0) + ξy(1).

On the other hand, ∫ 1

0

[
y(x)

(
−Gxx(x, ξ)

)
−
(
− y′′(x)

)
G(x, ξ)

]
dx

=

∫ 1

0

[
y(x)δ(x− ξ)− f(x)G(x, ξ)

]
dx

= y(ξ)−
∫ 1

0

G(x, ξ)f(x) dx.

Hence,

y(ξ) =

∫ 1

0

G(x, ξ)f(x) dx+ (1− ξ)y(0) + ξy(1).
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4.6 Problems

1. (a) Show that if a norm is derived from an inner product, then it obeys the parallelogram
law

‖f + g‖2 + ‖f − g‖2 = 2(‖f‖2 + ‖g‖2).

Solution:

(b) Show that a compact linear operator is always bounded.

Solution:

(c) Show that the eigenvalues of a compact symmetric operator satisfy |λ| ≤ ‖A‖.

Solution:

2. Find the adjoint operator L† and its domain (assuming standard inner product on L2[0, 1]).

(a) Lu = u′′ + a(x)u′ + b(x)u, u(0) = u′(1), u(1) = u′(0), where a is continuously differen-
tiable and b is continuous.

Solution:

(b) Lu = −(p(x)u′)′ + q(x)u, u(0) = u(1), u′(0) = u′(1), where p is continuously differen-
tiable and q is continuous.

Solution:

3. Consider the differential operator acting on L2(R)

L = − d2

dx2
, 0 ≤ x <∞,

with self-adjoint boundary conditions φ(0)/φ′(0) = tan θ for some fixed angle θ.

(a) Show that when tan θ < 0, there is a single negative eigenvalue with a normalisable
eigenfunction φ0(x) localised near the origin, but none when tan θ > 0.

Solution:

(b) Show that there is a continuum of eigenvalues λ = k2 with eigenfunctions φk(x) =
sin(kx+ η(k)), where the phase shift η is found from

eiη(k) =
1 + ik tan θ√
1 + k2 tan2 θ

.
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Solution:

(c) Evaluate the integral

I(x, x′) =
2

π

∫ ∞
0

sin(kx+ η(k)) sin(kx′ + η(k)) dk,

and interpret the result with regards the relationship to the Dirac delta function and
completeness, that is,

δ(x− x′)− I(x, x′) = φ0(x)φ0(x′).

You will need the following standard integral∫ ∞
−∞

eikx

1 + k2t2
dk

2π
=

1

2|t|
e−|x/t|.

Hint : You should monitor how the bound state contribution (for tan θ < 0) switches
on and off as θ is varied. Keeping track of the modulus signs in the given standard
integral is crucial for this.

Solution:

4. Consider the so-called Poschel-Teller (PT) equation

−d
2φ

dx2
− 2sech2(x)φ = Eφ, −∞ < x <∞.

(a) Show that under the change of variable u = tanh(x), the equation becomes

Lφ := −d
2φ

dx2
+ [u2 − u′]φ = λφ, λ = E + 1.

Solution:

(b) Show that the differential operator L can be rewritten as L = M †M , where

M =

(
d

dx
+ u(x)

)
, M † =

(
− d

dx
+ u(x)

)
.

Solution:

(c) Suppose that φ−(x) is an eigenfunction of the equation M †Mφ = λφ. By left-
multiplying both sides by M , show that there exists an eigenfunction φ+ satisfying
MM †φ+ = λφ+ for the same eigenvalue λ. Derive the inverse relationship

(E + 1)φ− = M †φ+,

and hence show that the mapping φ+ ←→ φ− breaks down in the special case λ = 0,
that is, E = −1.
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Solution:

(d) By writing down the explicit form for the equation MM †φ+ = λφ+, show that it has
eigensolutions of the form φ+,k(x) = eikx with E = k2. Using the relationship between
φ− and φ+ (for λ 6= 0), deduce that the differential operator L has a continuous
spectrum k2 + 1 with eigenfunctions

φk(x) =
1√

1 + k2
eikx(−ik + tanh(x)).

The normalisation is chosen such that at large |x|, where tanh(x) −→ ±1, we have

φ∗k(x)φk(x
′) −→ e−ik(x−x′).

Solution:

(e) Also show that L has a discrete eigenvalue λ = 0 with normalised eigenfunction

φ0(x) =
1√
2

sech(x).

Solution:

(f) Compute the difference

I = δ(x− x′)−
∫ ∞
−∞

φ∗k(x)φk(x
′)
dk

2π
,

by using

δ(x− x′) =

∫ ∞
−∞

e−ik(x−x′) dk

2π
,

and the standard integral ∫ ∞
−∞

e−ik(x−x′)

1 + k2

dk

2π
=

1

2
e−|x−x

′|,

together with its x′ derivative. Hence derive the expected completeness condition

δ(x− x′) = φ0(x)φ0(x′) +

∫ ∞
−∞

φ∗k(x)φk(x
′)
dk

2π
.

Solution:

5. (a) Solve the following differential equations in the sense of distribution:

i. x2u′ = 0,
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Solution:

ii. u′′ = δ′′(x).

Solution:

(b) Express δ(x2 − a2) in terms of the usual δ-function.

Solution:

6. Construct the Green’s function for the following problems:

(a) u′′ + α2u = f(x), u(0) = u(1), u′(0) = u′(1). For what value of α does the Green’s
function fail to exist?

Solution:

(b) u′′ +
3

2x
u′ − 3

2x2
u = f(x), u(0) = 0, u′(1) = 0.

Solution:

7. Consider the ODE

−y′′(x) = f(x), 0 < x < 1, y(0) = y(1), y′(0) = y′(1).

(a) Show that the associated linear operator has a zero eigenvalue and determine the
eigenfunction. What condition must f satisfy for a solution to exist?

Solution:

(b) Show that the modified Green’s function for this problem is

Ĝ(x, ξ) =
1

2
(x− ξ)2 − 1

2
|x− ξ|.

You should make sure that this Green’s function satisfies the ODE and the boundary
conditions.

Solution:
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